Смекни!
smekni.com

Исследование математических операций 2 (стр. 13 из 28)

Замечание. В диагональном методе не учитываются величины тарифов, в методе же наименьшей стоимости эти величины учитываются, и часто последний метод приводит к плану с меньшими общими затратами (что и имеет место в нашем примере), хотя это и не обязательно.

Кроме рассмотренных выше способов иногда используется, так называемый, метод Фогеля. Суть его состоит в следующем: В распределительной таблице по строкам и столбцам определяется разность между двумя наименьшими тарифами. Отмечается наибольшая разность. Далее в строке (столбце) с наибольшей разностью заполняется клетка с наименьшим тарифом. Строки (столбцы) с нулевым остатком груза в дальнейшем в расчет не принимаются. На каждом этапе загружается только одна клетка. Распределение груза производится, как и ранее.

Назад | Содержание | Далее

3.3. Понятие потенциала и цикла

Для перехода от одного базиса к другому при решении транспортной задачи используются так называемые циклы.

Циклом пересчета или короче, циклом в таблице перевозок называется последовательность неизвестных, удовлетворяющая следующим условиям:

1. Одно из неизвестных последовательности свободное, а все остальные – базисные.

2. Каждые два соседних в последовательности неизвестных лежат либо в одном столбце, либо в одной строке.

3. Три последовательных неизвестных не могут находиться в одном столбце или в одной строке.

4. Если, начиная с какого-либо неизвестного, мы будем последовательно переходить от одного к следующему за ним неизвестному то, через несколько шагов мы вернемся к исходному неизвестному.

Второе условие означает, что у двух соседних неизвестных в цикле либо первые, либо вторые индексы одинаковы.

Если каждые два соседних неизвестных цикла соединить отрезком прямой, то будет получено геометрическое изображение цикла – замкнутая ломаная из чередующихся горизонтальных и вертикальных звеньев, одна из вершин которой находится в свободной клетке, а остальные - в базисных клетках.

Можно доказать, что для любой свободной клетки таблицы перевозок существует один и только один цикл, содержащий свободное неизвестное из этой клетки, и что число вершин в цикле всегда четно.

Так, например, в таблице перевозок, составленной по диагональному методу при решения задачи из предыдущего пункта, неизвестному x21 соответствует цикл x21,x23,x13,x11,x21 и т.д.

Пусть теперь мы имеем некоторую свободную клетку с соответствующим ей циклом. Если мы изменим значение свободного неизвестного, увеличив его на некоторое число x, то, переходя последовательно от одной вершины цикла к другой, мы должны будем в силу неизменности сумм по строкам и по столбцам поочередно уменьшать и увеличивать значения неизвестных в цикле на то же число x. Например, в указанном выше цикле для свободного неизвестного x21 получим:

старые значения: x21= 0, x23= 80, x13= 20,x11= 170, x21= 0;

новые значения:

Очевидно, если снабдить вершины цикла поочередно знаками "+" и "–", приписав вершине в свободной клетке знак "+", то можно сказать, что в вершинах со знаком "+" число x прибавляется к прежнему значению неизвестного, находящегося в этой вершине, а в вершинах со знаком "–" это число x вычитается из прежнего значения неизвестного, находящегося в этой вершине.

Замечание. Так как число вершин в цикле всегда четно, то, возвращаясь в свободную клетку, мы должны будем приписать ей знак "+", т. е. тот знак, который ей уже приписан при выходе из нее. Это очень существенное обстоятельство, так как иначе мы пришли бы к противоречию. Безразлично также, в каком направлении обходится цикл при “означивании” вершин.

Если в качестве x выбрать наименьшее из чисел, стоящих в вершинах, снабженных знаком "–", то, по крайней мере, одно из прежних базисных неизвестных примет значение нуль, и мы можем перевести его в число свободных неизвестных, сделав вместо него базисным то неизвестное, которое было свободным.

Так, например, в рассмотренном выше цикле имеем отрицательные вершины x21 и x11 ; следовательно, выбрав х = min {80; 170} = 80 , мы получаем:

старые значения: x21= 0, x23= 80, x13= 20,x11= 170, x21= 0;

новые значения:

т. е. вместо прежнего базисного решения получаем новое базисное решение:

Выбор в качестве x минимального среди чисел, стоящих в отрицательных вершинах цикла, обеспечивает допустимость нового базиса.

Если минимальное значение среди базисных неизвестных, стоящих в отрицательных вершинах цикла, принимается не в одной отрицательной вершине, то свободной оставляют только одну из них, а в других клетках с тем же минимальным значением пишут нули. В этом случае новое базисное решение будет вырожденным.

Может случиться, что и само минимальное значение среди чисел в отрицательных клетках равно нулю. Тогда преобразование таб­лицы перевозок сведется к перестановке этого нуля в свободную клетку. Значения всех неизвестных при этом остаются неизменными, но решения считаются различными, так как различны базисы. Оба решения вырождены.

Описанное выше преобразование таблицы перевозок, в результате которого преобразуется базис, называется пересчетом по циклу.

Заметим, что неизвестные, не входящие в цикл, этим преобразованием не затрагиваются, их значения остаются неизменными и каж­дое из них остается либо в группе базисных, либо в группе свобод­ных неизвестных, как и до пересчета.

Выясним теперь, как пересчет по циклу влияет на общий объем затрат на перевозки и при каком условии эти затраты становятся меньше.

Пусть xpq – некоторое свободное неизвестное, для которого мы построили цикл и осуществили пересчет по циклу с некоторым числом x. Если вершине цикла, находящейся в i-й строке и j-м столбце таблицы перевозок, приписан знак "+", то значение неизвестного xij, находящегося в этой вершине, увеличивается на x, что в свою очередь вызывает увеличение затрат на cij x, где cij – тариф, соответствующий этой клетке; если же указанной вершине приписан знак “–”, то значение неизвестного xij уменьшается на x, что вызывает уменьшение затрат на cij x.

Сложим тарифы, соответствующие положительным вершинам цикла, и вычтем из этой суммы сумму тарифов, соответствующих отрицательным вершинам цикла; полученную разность Spq назовем алгебраической суммой тарифов для данного свободного неизвестного xpq . Подсчет алгебраической суммы тарифов можно истолковать и так: припишем тарифам те же знаки, которые приписаны соответствующим вершинам цикла, тогда алгебраическая сумма тарифов равна сумме таких тарифов со знаком (“относительных тарифов”).

Теперь, очевидно, мы можем, заключить, что в целом при пере­счете но циклу, соответствующему свободному неизвестному xpq общий объем затрат на перевозки изменится на произведение алгеб­раической суммы тарифов на x, т. е. на величину Spqx . Следовательно, если алгебраическая сумма тарифов для некоторого свобод­ного неизвестного xpq отрицательна (Spq < 0), то пересчет по циклу, соответствующему этому неизвестному, приводит к уменьшению общей суммы затрат на реализацию плана перевозок. Если же алгебраическая сумма тарифов положительна (Spq > 0), то пересчет по соответствующему циклу приведет к увеличению общей суммы затрат. И, наконец, если алгебраическая сумма тарифов равна нулю (Spq = 0), то пересчет по соответствующему циклу не изменит общую сумму затрат (два различных базисных плана требуют одинаковых затрат на их реализацию).

Так, например, для цикла x21,x23,x13,x11,x21 в рассмотренной задаче алгебраическая сумма тарифов

.

Значит, пересчет по этому циклу снижает расходы. И действитель­но, осуществив такой пересчет, мы получаем план, по которому объем перевозок в тонно-километрах составляет

тогда как по исходному плану он составил S1= 30650. Имеем снижение объема перевозок на 1200 тонно-километров, что и следовало ожидать, так как алгебраическая сумма тарифов в дан­ном случае равна –15, а пересчет по циклу осуществляется с помощью числа х = 80 (изменение затрат равно -15*80 = - 1200).

Вычисление алгебраической суммы тарифов для каждого из сво­бодных неизвестных можно производить без построения соответ­ствующего цикла, пользуясь, так называемыми, потенциалами. При­пишем каждой базе Ai, , некоторое число ui, и каждому потребителю Bj некоторое число vj :

,

так что

ui, + vj = cij , (3.6)

где cij – тарифы, соответствующие клеткам, заполненным базис­ными неизвестными. Эти числа ui, и vj называются потенциалами соответствующих баз и потребителей.

Зная потенциалы, легко вычислить алгебраическую сумму тари­фов. Действительно, если в алгебраической сумме тарифов по циклу, соответствующему свободному неизвестному xpq , заменить тарифы базисных клеток их выражениями через потенциалы по формулам (3.6), то, в силу чередования знаков при вершинах цикла, все потенциалы, кроме up и vq сократятся, и мы получим: