Смекни!
smekni.com

Исследование математических операций 2 (стр. 2 из 28)

3) Выборочный контроль продукции.

Естественный показатель эффективности, подсказанный формулировкой задачи – это средние ожидаемые расходы на контроль за единицу времени, при условии, что система контролирует обеспечение заданного уровня качества.

4) Военные действия.

Операция должна быть спланирована так, чтобы уничтожить вражеский объект. В качестве целевой функции – вероятность того, что произойдет событие А (уничтожение). Р(А)

1.

1.2. Основные элементы метода исследования операций

При решении любой конкретной задачи применение методов исследования операций заключается в следующем:

 построение математических, экономических и статистических моделей для задач принятия решений и управления в сложных ситуациях в условиях неопределенности (наличие случайных факторов);

 изучение взаимосвязей, определяющих возможные последствия принятых решений. Установление критериев эффективности, позволяющих оценить преимущества того или иного варианта.

Методы исследования операций обладают рядом специфических черт. Чтобы подход к решению задач можно было считать операционным, он должен содержать следующие элементы:

1. Ориентация на принятие решений. Основные результаты анализа должны иметь непосредственное и полностью определенное отношение к выбору способа действий (стратегии или тактики);

2. Оценка на основе критерия экономической эффективности. Сравнение различных возможных вариантов действий должно основываться на количественных оценках, позволяющих однозначно определить полезность ожидаемого исхода. Количественные оценки для коммерческих фирм обычно предполагают использование таких измеримых величин, как расходы, доходы, наличие денежных средств, норма прибыли от дополнительных капиталовложений и т.д. В рекомендуемом решении должен быть достигнут оптимальный баланс с учетом всех, нередко противоречивых факторов;

3. Доверие математической модели. Процедуры обращения с упомянутыми выше параметрами должны быть определены настолько точно, чтобы любой специалист в области системного анализа смог их трактовать совершенно однозначно. Другими словами: опираясь на одни и те же данные, различные специалисты должны получить одинаковые результаты.

4. Необходимость использования ЭВМ. Это условие отнюдь не является лишь желательным, оно скорее необходимо. Это обуславливается сложностью используемых математических моделей и большим объемом исходных данных. Вычисления могут быть громоздкими – необходимо использовать ЭВМ; а могут быть несложными, но в больших объемах (статистические модели).

Основные этапы применения метода ИО:

1. определение цели;

2. составление плана разработки проекта;

3. формулировка проблемы;

4. построение модели;

5. разработка вычислительного метода;

6. разработка технического задания на программирование, само программирование и отладка программы;

7. сбор данных;

8. проверка модели;

9. реализация результатов, то есть принятие решения.

1.3. Основные задачи, решаемые методом исследования операций. Классификация задач

Накопленный опыт в решении задач исследования операций и его систематизация позволили выделить следующие типы задач:

 задачи управления запасами,

 задачи распределения ресурсов,

 задачи ремонта и замены оборудования,

 задачи массового обслуживания,

 задачи упорядочивания,

 задачи сетевого планирования и управления (СПУ),

 задачи выбора маршрута,

 комбинированные задачи.

1. Задачи управления запасами.

Этот класс задач в настоящее время наиболее распространенный, а главное, изученный. Эти задачи имеют следующую особенность: с ростом запасов, увеличиваются расходы на их хранение, но снижаются потери, связанные с возможной их нехваткой. Следовательно, одна из задач управления запасами заключается в определении такого уровня запасов, который минимизирует следующие критерии:

 сумма ожидаемых затрат на хранение,

 сумма потерь из-за дефицита.

В зависимости от условий, задачи управления запасами делятся на 3 группы:

а) моменты поставок или оформления заказов на поставки, пополнение запасов фиксированы. Определить объемы производимой или закупаемой партии запасов;

б) объемы производимой или закупаемой партии запасов фиксированы. Определить моменты оформления заказов на поставки;

в) моменты оформления заказов и объемы закупаемых партий запасов нефиксированы. Определить эти величины, исходя из минимальных затрат и минимальных потерь из-за дефицита.

2. Задачи распределения ресурсов.

Эти задачи возникают тогда, когда существует определенный набор операций (работ), которые необходимо выполнить, а наличия ресурсов для выполнения операций наилучшим образом не хватает. В зависимости от условия задачи эти также делятся на 3 группы:

а) заданы работы и ресурсы. Распределить ресурсы между работами таким образом, чтобы максимизировать некоторую меру эффективности (прибыль) или минимизировать ожидаемые затраты (издержки производства).

Пример: известны производственное задание и производственные мощности предприятия. При существующих различных способах получения изделия, ограничения по мощности не позволяют для каждого изделия использовать наилучшую технологию. Какие способы производства надо выбрать, чтобы выполнить задание с минимальными затратами?

б) заданы только наличные ресурсы. Определить, какой состав работ можно выполнить с учетом этих ресурсов, чтобы обеспечить максимум некоторой меры эффективности.

Пример: задано предприятие с определенными производственными мощностями. Какую продукцию следует производить, чтобы получить максимальный доход?

в) заданы только работы. Определить, какие ресурсы необходимы для того, чтобы минимизировать суммарные издержки производства.

Пример: известно месячное расписание движения полетов пассажирских самолетов на авиалинии. Какое количество экипажей необходимо подобрать, чтобы выполнить план с минимальными затратами?

3. Задачи ремонта и замены оборудования.

Производственное оборудование с течением времени изнашивается и подлежит предупредительно-восстановительному ремонту. Оборудование также устаревает (морально и физически) и подлежит полной замене. При этом постановка задачи такова: определить такие сроки ремонта и замены оборудования, при которых минимизируется сумма затрат на ремонт и замену оборудования при его старении. Иногда в оборудовании выходят из строя отдельные элементы (например, микросхемы) – в данном случае требуется определить такие сроки профилактического ремонта по замене вышедших из строя деталей, чтобы потери на данный элемент были минимальными.

Здесь также имеет место профилактический контроль по обнаружению неисправностей. Требуется определить такие сроки контроля, при которых минимизируется сумма затрат на проведение контроля, а также минимизируется сумма потерь от простоя оборудования вследствие выхода из строя отдельных элементов.

4. Задачи массового обслуживания.

Данные задачи возникают там, где образуется очередь. С образованием очереди приходится сталкиваться как в производстве, так и в быту (производство: очередность выполнения заказа; в быту: магазин, поликлиника). Подобные задачи существуют и на транспорте.

Очередь возникает из-за того, что поток клиентов (заказов) поступает неравномерно и имеет случайный характер. То есть поток клиентов неуправляем. Объект, который обслуживает клиента, называется каналом обслуживания (продавец, врач, взлетно-посадочная полоса). Если каналов обслуживания много, очереди не образуется, НО возможны простои каналов обслуживания. Если каналов мало – образуется очередь. А следовательно, возможны затраты, связанные с ожиданием в очереди клиента ми с отказом клиента от обслуживания.

В данных задачах возможна следующая постановка: определить, какое количество каналов обслуживания необходимо, чтобы свести к минимуму суммарные затраты, связанные с несвоевременным обслуживанием и простоем каналов. Для решения задач используется теория массового обслуживания.

5. Задачи упорядочивания.

Эти задачи часто встречаются в производстве. Предположим, что в цехе изготавливается множество деталей по разным технологическим маршрутам. В парке оборудования имеется ограниченное число станков (токарный, фрезерный, строгальный и др.). На одном станке в данный момент времени может обрабатываться только 1 деталь. Появляется очередность выполнения работ, то есть появляются детали, ждущие обработки. Время обработки каждой детали обычно известно. Такая задача называется задачей календарного планирования или составлением расписания работ. Выбор очередности запуска деталей в обработку является задачей упорядочивания. В таких задачах в качестве критерия эффективности часто встречаются следующие:

 минимизация общей продолжительности работ (то есть интервала времени между моментом началом первой операции и моментом окончания последней);

 минимизация общего запаздывания. Запаздывание определяется как разность фактическим и плановым сроком обработки каждой детали. Общее запаздывание = сумме запаздываний по всем деталям.

6. Задачи сетевого планирования и управления (СПУ).

Данные задачи актуальны при разработке сложных, дорогостоящих проектов. Здесь рассматривается соотношение между сроком выполнения крупного комплекса операций и моментом начала всех операций отдельно в комплексе. Для строгой постановки задачи необходимо выполнить следующие условия: