Смекни!
smekni.com

Исследование математических операций 2 (стр. 23 из 28)

Назад | Содержание | Далее

5. СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ СИСТЕМ

5.1. Теоретические основы метода

Метод статистического моделирования (или метод Монте-Кар­ло) - это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не извест­ны в полной мере внутренние взаимодействия в этих системах.

Этот метод заключается в воспроизведении исследуемого физи­ческого процесса при помощи вероятностной математической мо­дели и вычислении характеристик этого процесса. Одно такое вос­произведение функционирования системы называют реализацией или испытанием. После каждого испытания регистрируют сово­купность параметров, характеризующих случайный исход реализа­ции. Метод основан на многократных испытаниях построенной модели с последующей статистической обработкой полученных данных с целью определения числовых характеристик рассматрива­емого процесса в виде статистических оценок его параметров. Про­цесс моделирования функционирования экономической системы сводится к машинной имитации изучаемого процесса, который как бы копируется на ЭВМ со всеми сопровождающими его случайно­стями.

Первые сведения о методе Монте-Карло были опубликованы в конце 40-х гг. Авторами метода являются американские математи­ки Дж. Нейман и С. Улам. В нашей стране первые работы были опубликованы в 1955-1956 гг. В.В. Чавчанидзе, Ю.А. Шрейдером и B.C. Владимировым.

Основой метода статистического моделирования является за­кон больших чисел. Закон больших чисел в теории вероятностей доказывает для различных условий сходимость по вероятности средних значений результатов большого числа наблюдений к неко­торым постоянным величинам.

Под законом больших чисел понимают ряд теорем. Например, одна из теорем Л.Л. Чебышева формулируется так: "При неограни­ченном увеличении числа независимых испытаний n среднее ариф­метическое свободных от систематических ошибок и равноточных результатов наблюдений

случайной величины
, имеющей ко­нечную дисперсию D(

), сходится по вероятности к математичес­кому ожиданию М(
) этой случайной величины». Это можно запи­сать в следующем виде:

, (5.1)

где

- сколь угодно малая положительная величина

Теорема Бернулли формулируется так: "При неограниченном увеличений числа независимых испытаний в одних и тех же усло­виях частота

наступления случайного события А сходится по вероятности к его вероятности Р, т. е.

, (5.2)

Согласно данной теореме, для получения вероятности какого-либо события, например вероятности состояний некоторой системы

,
, вычисляют частоты
для одной реализации (испытания), далее проводят подобные вычисления для числа реализаций, равного n. Результаты усредняют и этим самым с не­которым приближением, получают искомые вероятности состоя­ний системы. На основании вычисленных вероятностей определя­ют другие характеристики системы. Следует отметить, что, чем больше число реализаций n, тем точнее результаты вычисления ис­комых величин (вероятностей состояний системы).

Решение любой задачи методом статистического моделирования состоит в:

 разработке и построении структурной схемы процесса, выявле­нии основных взаимосвязей;

 формальном описании процесса;

 моделировании случайных явлений (случайных событий, слу­чайных величин, случайных функций), сопровождающих функ­ционирование исследуемой системы;

 моделировании (с использованием данных, полученных на пре­дыдущем этапе) функционирования системы - воспроизведении процесса в соответствии с разработанной структурной схемой и формальным описанием;.

 накоплении результатов моделирования, их статистической об­работке, анализе и обобщении.

В отличие от описанных ранее математических моделей, ре­зультаты которых отражали устойчивое во времени поведение сис­темы, результаты, получаемые при статистическом моделировании, подвержены экспериментальным ошибкам. Это означает, что лю­бое утверждение, касающееся характеристик моделируемой систе­мы, должно основываться на результатах соответствующих статис­тических проверок.

Экспериментальные ошибки при статистическом моделирова­нии в значительной степени зависят от точности моделирования случайных явлений, сопровождающих функционирование исследуемой системы.

Известно, что при изучении вероятностных систем случайные явления могут интерпретироваться в виде случайных событий, слу­чайных величин и случайных функций. Следовательно, моделиро­вание случайных явлений сводится к моделированию случайных событий, случайных величин и случайных функций. Так как слу­чайные события и случайные функции могут быть представлены через случайные величины, то и моделирование случайных собы­тий и случайных функций производится с помощью случайных ве­личин. В связи с этим рассмотрим сначала способы моделирования случайных величин.

Моделирование случайных величин

Для моделирования случайной величины необходимо знать ее закон распределения. Наиболее общим способом получения после­довательности случайных чисел, распределенных по произвольно­му закону, является способ, в основе которого лежит их формиро­вание из исходной последовательности случайных чисел, распреде­ленных в интервале [0,1] по равномерному закону.

Равномерно распределенные в интервале [0,1] последовательности случайных чисел можно получить тремя способами:

 использование таблиц случайных чисел;

 применение генераторов случайных чисел;

 метод псевдослучайных чисел.

При решении задачи без применения ЭВМ чаще всего исполь­зуют таблицы случайных чисел. В таблицах случайных чисел слу­чайные цифры имитируют значения дискретной случайной вели­чины с равномерным распределением:

При составлении таких таблиц выполняется требование, чтобы каждая из этих цифр от 0; 1;...; 9 встречалась примерно одинаково часто и независимо от других с вероятностью pi = 0,1.

Самая большая из опубликованных таблиц случайных чисел содержит 1000 000 цифр. Таблицы случайных чисел составить не так просто. Они требуют тщательной проверки с помощью специаль­ных статистических тестов.

При решении задач на ЭВМ для выработки случайных чисел, равномерно распределенных в интервале [0,1], могут применяться генераторы случайных чисел. Данные генераторы преобразуют ре­зультаты случайного физического процесса в двоичные числа. В качестве случайного физического процесса обычно используют соб­ственные шумы (случайным образом меняющееся напряжение).

Недостатки данного способа получения случайных чисел следующие:

1. Трудно проверить качество вырабатываемых чисел.

2. Случайные числа не воспроизводимы (если их не запоми­нать), и, как следствие, нельзя повторить расчет на ЭВМ для ис­ключения случайного сбоя.

Получение псевдослучайных чисел с равномерным законом рас­пределения заключается в выработке псевдослучайных чисел. Псев­дослучайные числа - это числа, полученные по какой-либо форму­ле и имитирующие значения случайной величины. Под словом "имитирующие" подразумевается, что эти числа удовлетворяют ря­ду тестов так, как если бы они были значениями этой случайной величины.

Первый алгоритм для получения псевдослучайных чисел пред­ложил Дж. Нейман. Это так называемый метод середины квадратов, который заключается в следующем:

и т.д.

Алгоритм себя не оправдал: получилось больше, чем нужно, малых значений

- случайных чисел. В настоящее время разрабо­тано множество алгоритмов для получения псевдослучайных чисел.

Назовем достоинства метода псевдослучайных чисел.

1. На получение каждого случайного числа затрачивается не­сколько простых операций, так что скорость генерирования слу­чайных чисел имеет тот же порядок, что и скорость работы ЭВМ.

2. Малый объем памяти ЭВМ для программирования.

3. Любое из чисел легко воспроизвести.

4. Качество генерируемых случайных чисел достаточно прове­рить один раз.

Подавляющее число расчетов по методу Монте-Карло осуще­ствляется с использованием псевдослучайных чисел. От последова­тельности случайных чисел, равномерно распределенных в интер­вале [0,1], нетрудно перейти к последовательности случайных чисел с произвольным заданным законом распределения.