Пример 5.4.
1. Разыграть 100 возможных значений случайной величины Х распределенной нормально с параметрами a = 0 и = 1.
2. Оценить параметры разыгранной случайной величины Х.
Решение
1. Выберем 12 случайных чисел распределенных равномерно в интервале (0, 1) из таблицы случайных чисел, либо из компьютера. Сложим эти числа и из суммы вычтем 6, в итоге получим:
Поступая аналогичным образом найдем остальные возможные значения
.2. Выполнив необходимые расчеты найдем выборочную среднюю, которая является оценкой
и выборочное среднее квадратическое отклонение, которое является оценкой . Получим:
Как видим, оценки удовлетворительны, т.е. близко к нулю, а близко к единице.
Если требуется разыграть значения нормальной ненормированной случайной величины с математическим ожиданием отличным от нуля и отличным от единицы, то сначала разыгрывают возможные значения xiнормированной случайной величины, а затем находят искомое значение по формуле
которая получена из соотношения:
Таблица 5.1
Формулы для моделирования случайных величин
Назад | Содержание | Далее
5.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
В реальных условиях функционирования СМО имеются переходные режимы, а входящие и исходящие потоки требований являются далеко не простейшими. В этих условиях для оценки качества функционирования систем обслуживания широко используют метод статистических испытаний (метод Монте-Карло). Основой решения задачи исследования функционирования СМО в реальных условиях является статистическое моделирование входящего потока требований и процесса их обслуживания (исходящего потока требований).
Для решения задачи статистического моделирования функционирования СМО должны быть заданы следующие исходные данные:
описание СМО (тип, параметры, критерии эффективности работы системы);
параметры закона распределения периодичности поступлений требований в систему;
параметры закона распределения времени пребывания требования в очереди (для СМО с ожиданием);
параметры закона распределения времени обслуживания требований в системе.
Решение задачи статистического моделирования функционирования СМО складывается из следующих этапов.
1. Вырабатывают равномерно распределенное случайное число .
2. Равномерно распределенные случайные числа преобразуют в величины с заданным законом распределения:
интервал времени между поступлениями требований в систему (
); время ухода заявки из очереди (для СМО с ограниченной длиной очереди);
длительность времени обслуживания требования каналами (
).3. Определяют моменты наступления событий:
поступление требования на обслуживание;
уход требования из очереди;
окончание обслуживания требования в каналах системы.
4. Моделируют функционирование СМО в целом и накапливают статистические данные о процессе обслуживания.
5. Устанавливают новый момент поступления требования в систему, и вычислительная процедура повторяется в соответствии с изложенным.
6. Определяют показатели качества функционирования СМО путем обработки результатов моделирования методами математической статистики.
Методику решения задачи рассмотрим на примере моделирования СМО с отказами.
Пусть система имеет два однотипных канала, работающих с отказами, причем моменты времени окончания обслуживания на первом канале обозначим через t1i , на втором канале - через t2i . Закон распределения интервала времени между смежными поступающими требованиями задан плотностью распределения f1(tT). Продолжительность обслуживания также является случайной величиной с плотностью распределения f1(to).
Процедура решения задачи будет выглядеть следующим образом:
1. Вырабатывают равномерно распределенное случайное число .
2. Равномерно распределенное случайное число преобразуют в величины с заданным законом распределения, используя формулы табл. 5.1. Определяют реализацию случайного интервала времени (
) между поступлениями требований в систему.3. Вычисляют момент поступления заявки на обслуживание:
.4. Сравнивают моменты окончания обслуживания предшествующих заявок на первом t1(i-1) и втором t2(i-1) каналах.
5. Сравнивают момент поступления заявки ti c минимальным моментом окончания обслуживания (допустим, что t1(i-1) < 2(i-1)):
если [
] < 0, то заявка получает отказ и вырабатывают новый момент поступления заявки описанным способом; если
, то происходит обслуживание.6. При выполнении условия 5 б) определяют время обслуживания i-й заявки на первом канале путем преобразования случайной величины в величину (время обслуживания /-и заявки) с заданным законом распределения.
7. Вычисляют момент окончания обслуживания i-й заявки на первом канале .
8. Устанавливают новый момент поступления заявки, и вычислительная процедура повторяется в соответствии с изложенным.
9. В ходе моделирования СМО накапливаются статистические данные о процессе обслуживания.
10. Определяют показатели качества функционирования системы путем обработки накопленных результатов моделирования методами математической статистики.
Назад | Содержание | Далее
5.4. Моделирование потоков отказов элементов сложных технических систем
Под сложной технической системой будем понимать систему, состоящую из элементов (два и более). Отказ одного из элементов системы приводит к отказу системы в целом.
Рассмотрим последовательность замен некоторого определенного элемента Z данного наименования. Эксплуатация каждого нового элемента начинается с момента окончания срока службы предыдущего. Первый элемент отрабатывает время t1 , второй - t2 , третий - t3 и т. д.
Случайная ситуация, сложившаяся в k-м опыте (ситуации) для элемента Z, показана на рис. 5.1.
Рис. 5.1. Временная эпюра случайной ситуации при k-м опыте в случае мгновенного восстановления отказавшей системы путем замены элемента
На рис. 5.1 видно, что система начинает свою работу в момент времени t = 0 и, отработав случайное время t1k, выходит из строя в момент t1k = t1k. В этот момент система мгновенно восстанавливается (элемент заменяется) и снова работает случайное время t2k. По истечении некоторого времени система (элемент) вновь выходит из строя в момент и вновь мгновенно восстанавливается.