Смекни!
smekni.com

Экономико-математическое моделирование (стр. 3 из 7)

Тогда в формулу (3) подставим xij:

Хi=

(7)

Формулу (7), которая представляет систему линейных уравнений, можно представить в матричном виде:

(8), где

а – матрица коэффициентов прямых затрат

Уравнение (8) можно раскрыть через коэффициенты полных материальных затрат. Тогда:

единичная матрица, у которой по диагонали “1”, а остальные “0”:

(9)

Выражение (9) – валовая продукция, выраженная через вектор конечной продукции У и матрицу

= А, которая представляет матрицу полных материальных затрат. Тогда:

(10)

Выражение (10) можно представить в развернутой форме:

(11)

Выражение (11) представляет систему из n уравнений, которые выражают валовую продукцию каждой отрасли как функцию конечной продукции всех отраслей. В общем виде для любой отрасли i

(12)

3.3. Разновидности матричных балансовых моделей.

Данные модели могут применяться как на уровне народного хозяйства, так и на уровне отдельного предприятия. Представляют:

1) матричную модель народного хозяйства в целом (государства, республики);

2) матричную модель межрегионального баланса (Черниговский регион);

3) балансовые модели на уровне отдельных предприятий (матричные модели тех-пром-фин-плана).

Можно рассчитать исходя из вариантов:

1) Когда задается уровень валовой продукции, то рассчитываются все технологические коэффициенты по производящим и потребляющим отраслям.

2) Когда задается уровень конечной продукции (вектор), рассчитывается вектор валовой продукции и все технологические коэффициенты.

Тема 4. Оптимизационные ЭММ.

1.1. Особенности ЭММ оптимизации.

В условиях рыночных отношений, когда сырьевые ресурсы ограничены, возникает вопрос оптимизации прибыли, себестоимости и экономии ресурсов. Оптимизационные модели разного характера часто сводятся к задачам линейного программирования.

ЭММ оптимизации содержит одну целевую функцию, в которой показательной является эффективность производства, и систему ограничений, куда входят факторы, в области которых модель не теряет своей практической ценности. Система ограничений должна составляться корректно, при этом возможны 4 случая:

1) Ограничения модели несовместимы (модель не имеет неотрицательных решений).

2) Неотрицательные решения имеются, но максимум (минимум) целевой функции не ограничен (®¥). Условия ограничений выбраны неверно.

3) Оптимальное значение целевой функции представляет собой конечное число и достигается при единственном сочетании переменных системы ограничений.

4) Оптимальное значение целевой функции достигается при многих вариантах значений переменных системы ограничений (система ограничений не корректна). В линейных моделях число переменных х может иметь разные значения.

Если число х (видов продукции) больше числа независимых ограничений и задача имеет одно решение, то в оптимальном плане число х (видов продукции) будет не меньше числа ограничений. Остальные переменные х будут равны 0.

4.2. ЭММ оптимизации производственного плана отрасли.

(13)

k – вид, номер производимой продукции;

l – число видов продукции;

s – вид выделяемых ресурсов;

m – число видов выделяемых ресурсов;

Rk – прибыль от реализации единицы продукции k вида;

Xk - объем (количество изделий) k вида;

вsk – норма потребления S вида ресурсов при производстве единицы k вида продукции;

Bs – объем выделяемых ресурсов S вида ;

hk, qk – верхняя и нижняя граница, соответствующая по производству k вида продукции.

4.3. ЭММ оптимизации выпуска продукции предприятиями отрасли.

(14)

i – номер предприятия;

n – число предприятий;

k – вид, номер производимой продукции;

l – число видов продукции;

s – вид выделяемых ресурсов;

m – число видов выделяемых ресурсов;

Rki – прибыль от реализации единицы продукции k вида на i предприятии;

Xki - объем (количество изделий) k вида на i предприятии;

Ak - план выпуска k вида продукции;

вski – норма потребления S вида ресурсов при производстве единицы k вида продукции на на i предприятии;

Bsi – объем выделяемых ресурсов S вида на i предприятии;

hki, qki – верхняя и нижняя граница, соответствующие производству k вида продукции на i предприятии.

4.4. ЭММ распределения финансовых ресурсов по оптимизации прироста мощностей (отрасли, предприятия, ...).

(15)

Сi – стоимость единицы продукции i поставщика;

Ki – капитальные затраты на единицу готовой продукции при строительстве нового предприятия;

E – нормирующий коэффициент эффективности капитальных вложений;

tij – транспортные расходы по перевозке единицы продукции i поставщика j потребителю;

xij – объем поставок продукции i поставщика j потребителю;

Ai – мощность i поставщика;

Bj – спрос j потребителя.

4.5. Распределение капитальных вложений по проектам.

(16)

j – вариант (индекс) проекта капитальных вложений;

s – общее число проектов;

kj – объем капитальных вложений по j варианту;

M – суммарный годовой объем капитальных вложений;

Rj – ожидаемый доход от реализации j варианта капитальных вложений;

N – общее число вариантов капитальных вложений.

4.6. ЭММ составления оптимальных смесей, сплавов, соединений и выбор оптимального рациона питания (кормления).

Данная модель позволяет исходя из стоимости исходных компонентов и содержания необходимых элементов в исходных компонентах получить дешевый выходной продукт. Данная модель применяется на металлургических, химических, нефтеперерабатывающих заводах, крупных АПК.

(17)

i – номер (индекс) исходного материала;

n – количество исходных компонентов;

j – номер (индекс) химического элемента;

m – общее количество компонентов, входящих в готовую продукцию;

hij - %(доля) j химического элемента в i исходном материале;

Hj - %(доля) j химического элемента готовой продукции;

Pi – цена за единицу каждого i исходного материала;

Xi - % (доля) i исходных материалов.

4.7. ЭММ оптимизации раскроя материала.

Данная модель позволяет выбирая один из способов раскроя, изготовить определенное количество заготовок с минимальным расходом материала.