Смекни!
smekni.com

Экономико-математическое моделирование (стр. 6 из 7)

Оптимизация и оценка эффективности СМО состоит в нахождении средних суммарных затрат на обслуживание каждой заявки и нахождение средних суммарных потерь от заявок не обслуженных.

СМО состоит из определенного числа обслуживающих каналов и предназначена для выполнения заявок с разным характером распределения момента времени на обслуживание.

Моделирование СМО предполагает:

1) построение ЭММ, связывающих параметры СМО (число каналов, их производительность и т.п.) с показателями эффективности;

2) оптимизацию данных показателей с целью получения максимальной эффективности.

7.2. Классификация и обозначение СМО.

По ряду признаков СМО делятся на:

1. СМО: - с очередями;

- с отказами заявок (очереди);

2. СМО с очередью: - в порядке очереди;

- в случайном порядке;

- обслуживание с приоритетом (абсолютным или относительным);

3. СМО с многофазным обслуживанием;

4. СМО: - закрытые (замкнутые) – поток заявок генерируется самой системой;

- открытые – характер потока заявок не зависит от состояния СМО;

5. СМО: - одноканальные;

- многоканальные.

Обозначения СМО.

Для сокращения записи и характеристик СМО принята общемировая система записи по формату Кендола.

( a ç b ç c ç) : ( d çe çf )

a –характеризует закон распределения заявок входного потока;

b - характеризует закон распределения интервалов выполнения заявок на обслуживание;

c - характеризует количество каналов обслуживания;

d - характеризует дисциплину очереди;

e - характеризует максимальное количество требований (заявок) на обслуживание (е в очереди + е в обслуживании);

f – максимальный объем источника (генератора) заявок.

Пример.

GIçGçN

GI - данная позиция характеризует, что момент заявок, поступающих на обслуживание, распределен по случайному закону с функцией распределения F(x) с математическим ожиданием

.

F(x) – любой закон распределения;

G - данная позиция характеризует моменты распределения (временные интервалы) обслуживания заявок с любой функцией распределения H(x) и со средним временем обслуживания

.

( M1çM2çN ) : - характеризует, что поток заявок, поступающих на обслуживание как входящий поток, подчиняется закону Пуассона с функцией распределения

,

l - интенсивность потока заявок;

M1 – простейший поток заявок;

N – количество мест по обслуживанию заявок;

M2 – характеризует поток обслуживания и распределения времени обслуживания также по простейшему Пуассоновскому закону с функцией распределения

,

m - характеризует интенсивность потока обслуживания.

Простейший поток обладает тремя свойствами:

1) стационарностью;

2) безпоследействия;

3) ординарностью.

Стационарность – это когда вероятность попадания того или иного числа заявок на интервал времени длиной t зависит от длины этого интервала и не зависит от того, где этот интервал расположен на оси времени.

Поток безпоследействия – когда для любых не перекрывающихся участков времени число заявок, попадающих на один из участков, не зависит от числа заявок, попадающих на другой участок.

Ординарность – это когда вероятность попадания на участок t двух или более заявок пренебрежимо мала по сравнению с вероятностью попадания одной заявки.

Поток, обладающий вышеназванными тремя свойствами, называется простейшим (стационарным, Пуассоновским ) потоком.

Эрланговский поток – “просеянный” простейший поток с коэффициентом k = (2;3;4...), то есть когда обслуживается каждая 2,3,...,k заявка.

ElêEmêNM – эрланговский входной поток заявок El и эрланговский закон обслуживания Em.

7.3. Основные характеристики системы массового обслуживания.

Характеристиками, принятыми для СМО, являются:

1) вероятность потери заявок

Ротказа = Рпотерь

2) вероятность занятости k каналов

Рк

3) среднее число занятых каналов

4) коэффициент простоя каналов

N0 – незанятых каналов,

n – всего каналов.

5) средняя длина очереди

6) среднее число требований, находящихся на обслуживании

Эффективность СМО можно определить, используя следующую методику:

(*) ЕСМО =

qожид –потери в результате ожидания 1 заявки в единицу времени;

qnk – стоимость простоя одного канала в единицу времени;

qk - стоимость эксплуатации одного канала в единицу времени;

(*) – показывает один из возможных подходов к оценке эффективности СМО. Как правило для высокоточных оценок эффективности используются имитационные модели.

Тема 8. ЭММ и модели АСУ.

8.1. Основные характеристики и классификация АСУ.

Управление – целенаправленное воздействие на параметры системы и координация деятельности всей системы с целью получения максимальной эффективности.

АСУ – автоматизированная система управления, в которой применяются современные автоматические средства обработки информации, математические методы и экспертные системы для решения задач управления.

АСУ подразделяются на два класса:

1) АС организационного управления (административного);

2) АСУ технологическими процессами.

АСУ обеспечивает высокую эффективность за счет:

- высокого уровня использования входной информации и ускорения ее обработки на ЭВМ;

- за счет проведения расчетов оптимизации и имитационного моделирования с применением ЭВМ;

- принятие оптимальных решений с помощью экспертных систем (систем поддержки и принятия решения).

8.2. ЭММ расчета эффективности АСУ.

Основным показателем применения АСУ является коэффициент экономической эффективности. Расчеты данного коэффициента ведутся на этапах:

1) при планировании и создании АСУ;

2) на стадии технического и рабочего проектов АСУ;

3) после внедрения АСУ.

Как правило, эффективность АСУ определяется коэффициентом годовой прибыли (его приростом), который определяется исходя из методики

ПАСУ = ((А2 – А1)/А1)*П1 + ((С1 – С2)/100)*А2, где

А1, А2 – годовые объемы производства продукции до внедрения и после внедрения соответственно;

С12 - затраты на 1 грн. произведенной продукции до и после внедрения АСУ;

П1 – прибыль до внедрения АСУна единицу продукии.

Кроме предложенного коэффициента годовой прибыли оценка эффективности АСУ возможна за счет подхода по срокам окупаемости внедренной АСУ.

Тема 9. Эконометрические модели и их применение в экономике.

9.1. Основные понятия об эконометрических моделях и корреляционном анализе.

Эконометрические модели являются составляющими более широкого класса ЭММ. Данная модель выступает в качестве средств анализа и прогнозирования конкретных экономических процессов, как на макро, так и на микро уровнях на основе реальной статистики.

Эконометрическая модель, учитывая корреляционные связи, позволяет путем подбора аналитической зависимости построить модель на базисном периоде и при достаточной адекватности модели использовать ее для краткосрочного прогноза.

При синтезе эконометрических моделей при имеющихся факторных признаках xi и результативных параметрах yi необходимо определить a0, a1, a2, a3, …,an.

yi= f(xi) + ei, где

f(xi) – величина детерминированная;

ei, yi – величины случайные.

Эконометрическая модель опирается на понятие корреляционных связей и так называемое уравнение регрессии.

Корреляционная связь – когда при одном и том же значении факторного признака х встречаются разные значения у. Корреляционные связи описываются так называемыми уравнениями регрессии.

Уравнение регрессии – уравнение прямой (как и любой кривой), описывающее корреляционную связь, а сама прямая (кривая) называется линией регрессии.

Корреляционные связи оцениваются по среднему значению всей совокупности результативного признака, такт как для одного и того же значения факторного признака возможны различные значения результативного признака.


Корреляционные связи (уравнения регрессии), а также эконометрические модели, построенные на базе уравнения регрессии, могут описываться:

1) уравнением прямой: yi = a0 + a1x

2) уравнением 2-го порядка: yi = a0 + a1x + a2x2

3) уравнением показательной функции: yi = a0a1x

4) уравнением степенной функции: yi = a0xa1

5) уравнением гиперболы: yi = a0 + a11/x

При построении эконометрических моделей нам известны фактические значения х и у, а нам необходимо определить параметры a0 , a1, a2 для соответствующей модели. Данные параметры определяются по методу наименьших квадратов.