Смекни!
smekni.com

Балансовые модели (стр. 3 из 7)

Определение 2. Коэффициент полных материальных затрат Ь^ показывает, какое количество продукции i-й отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j-й отрасли.

Коэффициенты полных материальных затрат можно применять, когда необходимо определить, как скажется на валовом выпуске некоторой отрасли предполагаемое изменение объемов конечной продукции всех отраслей:

(10)

где

и
— изменения (приросты) величин валовой и конечной продукции соответственно.

3. Коэффициенты прямых и полных материальных затрат

Переходя к анализу модели межотраслевого баланса, необходимо прежде всего рассмотреть основные свойства матрицы коэффициентов прямых материальных затрат А. Коэффициенты прямых затрат по определению являются неотрицательными, следовательно, матрица А в целом может быть названа неотрицательной:

. Так как процесс воспроизводства нельзя было бы осуществлять, если бы для собственного воспроизводства в отрасли затрачивалось большее количество продукта, чем создавалось, то очевидно, что диагональные элементы матрицы А меньше единицы:
.

Система уравнений межотраслевого баланса является отражением реальных экономических процессов, в которых содержательный смысл могут иметь лишь неотрицательные значения валовых выпусков; таким образом, вектор валовой продукции состоит из неотрицательных компонентов и называется неотрицательным:

. Встает вопрос, при каких условиях экономическая система способна обеспечить положительный конечный выпуск по всем отраслям. Ответ на этот вопрос связан с понятием продуктивности матрицы коэффициентов прямых материальных затрат.

Будем называть неотрицательную матрицу А продуктивной, если существует такой неотрицательный вектор

, что

(11)

Очевидно, что условие (11) означает существование положительного вектора конечной продукции Y > 0 для модели межотраслевого баланса (6).

Для того чтобы матрица коэффициентов прямых материальных затрат А была продуктивной, необходимо и достаточно чтобы выполнялось одно из перечисленных ниже условий:

1) матрица (Е - А) неотрицательно обратима, т.е. существует обратная матрица

;

2) матричный ряд

сходится, причем его сумма равна обратной матрице (Е - А)-1;

3) наибольшее по модулю собственное значение

матрицы А, то есть решение характеристического уравнения

строго меньше единицы;

4) все главные миноры матрицы (Е - А), т.е. определители матриц, образованные элементами первых строк и первых столбцов этой матрицы, порядка от 1 до n, положительны.

Более простым, но только достаточным признаком продуктивности матрицы А является ограничение на величину ее нормы, т.е. на величину наибольшей из сумм элементов матрицы А в каждом столбце. Если норма матрицы А строго меньше единицы, то эта матрица продуктивна; повторим, что данное условие является только достаточным, и матрица А может оказаться продуктивной и в случае, когда ее норма больше единицы.

Наибольший по модулю корень характеристического уравнения, приведенного в условии 3) продуктивности матрицы А (обозначим его через Я.*), может служить оценкой общего уровня коэффициентов прямых материальных затрат, а следовательно, величина 1-Я.* характеризует остаток после затрат, т.е. продуктивность. Чем больше 1-Я.*, тем больше возможности достижения других целей, кроме текущего производственного потребления. Другими словами, чем выше общий уровень коэффициентов матрицы А, тем больше наибольшее по модулю собственное значение Я.* и ниже уровень продуктивности, и наоборот, чем ниже общий уровень коэффициентов матрицы А, тем меньше наибольшее по модулю собственное значение и выше продуктивность.

Перейдем к анализу матрицы коэффициентов полных материальных затрат, т.е. матрицы

. Согласно определению 2 коэффициент этой матрицы показывает, сколько всего нужно произвести продукции i-й отрасли, чтобы получить единицу конечной продукции j-й отрасли.

Дадим другое определение коэффициента полных материальных затрат исходя из того, что кроме прямых затрат существуют косвенные затраты той или иной продукции при производстве продукции данной отрасли. Рассмотрим в качестве примера формирование затрат электроэнергии на выпуск стального проката, при этом ограничимся технологической цепочкой «руда-чугун-сталь-прокат». Затраты электроэнергии при получении проката из стали будут называться прямыми затратами, те же затраты при получении стали из чугуна будут называться косвенными затратами 1-го порядка, а затраты электроэнергии при получении чугуна из руды будут называться косвенными затратами электроэнергии на выпуск стального проката 2-го порядка и т. д. В связи со сказанным выше имеет место следующее определение.

Определение 3. Коэффициентом полных материальных затрат

называется сумма прямых затрат и косвенных затрат продукции i-й отрасли для производства единицы продукции j-й отрасли через все промежуточные продукты на всех предшествующих стадиях производства. Если коэффициент косвенных материальных затрат k-го порядка обозначить через
то имеет место формула

, (12)

а если ввести в рассмотрение матрицу коэффициентов полных материальных затрат

и матрицы коэффициентов косвенных материальных затрат различных порядков
, то поэлементную формулу (12) можно записать в более общем матричном виде:

(13)

Исходя из содержательного смысла коэффициентов косвенных материальных затрат можно записать ряд матричных соотношений:

с использованием которых матричная формула (13) может быть переписана в следующем виде:

(14)

Если матрица коэффициентов прямых материальных затрат А является продуктивной, то из условия 2) продуктивности существует матрица

, являющаяся суммой сходящегося матричного ряда:

(15)

Из сопоставления соотношений (14) и (15) устанавливается следующая связь между двумя матрицами коэффициентов полных материальных затрат:

,

или, в поэлементной записи:

Данная связь определяет экономический смысл различия между коэффициентами матриц В и С: в отличие от коэффициентов матрицы С, учитывающих только затраты на производство продукции, коэффициенты матрицы В включают в себя кроме затрат также саму единицу конечной продукции, которая выходит за сферу производства.

Перейдем теперь к вычислительным аспектам решения задач на основе модели межотраслевого баланса. Основной объем расчетов по этой модели связан с вычислением матрицы коэффициентов полных материальных затрат В. Если матрица коэффициентов прямых материальных затрат А задана и является продуктивной, то матрицу В можно находить либо по формулам обращения матриц, рассматриваемым в курсе матричной алгебры, либо приближенным способом, используя разложение в матричный ряд (15).

Рассмотрим первый способ нахождения матрицы В. Находят матрицу (Е - А), а затем, применяя один из прямых методов обращения невырожденных матриц, вычисляют матрицу

. Одним из наиболее употребительных методов обращения матриц является метод Жордана. Часто применяется также метод, основанный на применении формулы матричной алгебры

(16)

где в числителе матрица, присоединенная к матрице (Е -А), элементы которой представляют собой алгебраические дополнения для элементов транспонированной матрицы (Е -А)', а в знаменателе — определитель матрицы (Е - А). Алгебраические дополнения в свою очередь для элемента с индексами i и j получаются умножением множителя

на минор, получаемый после вычеркивания из матрицы i-й строки и j-го столбца.