Смекни!
smekni.com

Балансовые модели (стр. 4 из 7)

При втором способе вычисления матрицы коэффициентов полных материальных затрат используется формула (15). Обязательным условием корректности этих расчетов является условие продуктивности матрицы А, и при расчетах ограничиваются учетом косвенных материальных затрат до некоторого порядка включительно, например до 2-го, 3-го порядков. В этом способе используется процедура умножения квадратных матриц с их последующим сложением, и коэффициенты полных материальных затрат получаются с известным приближением (с недостатком).

4. Межотраслевые балансовые модели в анализе экономических показателей

Различные модификации рассмотренной выше модели межотраслевого баланса производства и распределения продукции в народном хозяйстве позволяют расширить круг показателей, охватываемых моделью. Рассмотрим применение межотраслевого балансового метода для анализа таких важных экономических показателей, как труд, фонды и цены.

К числу важнейших аналитических возможностей данного метода относится определение прямых и полных затрат труда на единицу продукции и разработка на этой основе балансовых продуктово-трудовых моделей, исходной моделью при этом служит отчетный межпродуктовый баланс в натуральном выражении. В этом балансе по строкам представлено распределение каждого отдельного продукта на производство других продуктов и конечное потребление (первый и второй квадранты схемы межотраслевого баланса). Отдельной строкой дается распределение затрат живого труда в производстве всех видов продукции; предполагается, что трудовые затраты выражены в единицах труда одинаковой степени сложности.

Обозначим затраты живого труда в производстве j-го продукта через Lj, а объем производства этого продукта (валовой выпуск), как и раньше, через Xj. Тогда прямые затраты труда на единицу j-го вида продукции (коэффициент прямой трудоемкости) можно задать следующей формулой:

(17)

Введем понятие полных затрат труда как суммы прямых затрат живого труда и затрат овеществленного труда, перенесенных на продукт через израсходованные средства производства. Если обозначить величину полных затрат труда на единицу продукции j-го вида через Tj, то произведения вида

отражают затраты овеществленного труда, перенесенного на единицу /-го продукта через i-e средство производства; при этом предполагается, что коэффициенты прямых материальных затрат aij выражены в натуральных единицах. Тогда полные трудовые затраты на единицу j-го вида продукции (коэффициент полной трудоемкости) будут равны

Введем в рассмотрение вектор-строку коэффициентов прямой трудоемкости

и вектор-строку коэффициентов полной трудоемкости
.

Тогда с использованием уже рассматриваемой выше матрицы коэффициентов прямых материальных затрат А (в натуральном выражении) систему уравнений (18) можно переписать в матричном виде:

(19)

Произведя очевидные матричные преобразования с использованием единичной матрицы Е

получим следующее соотношение для вектора коэффициентов полной трудоемкости:

(20)

(20')

Обозначим через L величину совокупных затрат живого труда по всем видам продукции, которая с учетом формулы (6.17) будет равна

(21)

Используя соотношения (21) (8) и (20'), приходим к следующему равенству:

(22)

здесь t и Т — вектор-строки коэффициентов прямой и полной трудоемкости, а X и У — вектор-столбцы валовой и конечной продукции соответственно.

Соотношение (6.22) представляет собой основное балансовое равенство в теории межотраслевого баланса труда. В данном случае его конкретное экономическое содержание заключается в том, что стоимость конечной продукции, оцененной по полным затратам труда, равна совокупным затратам живого труда. Сопоставляя потребительский эффект различных взаимозаменяемых продуктов с полными трудовыми затратами на их выпуск, можно судить о сравнительной эффективности их производства. С помощью показателей полной трудоемкости более полно и точно, чем при использовании существующих стоимостных показателей, выявляется структура затрат на выпуск различных видов продукции и прежде всего соотношение между затратами живого и овеществленного труда.

На основе коэффициентов прямой и полной трудоемкости могут быть разработаны межотраслевые и межпродуктовые балансы затрат труда и использования трудовых ресурсов. Схематически эти балансы строятся по общему типу матричных моделей, однако все показатели в них (межотраслевые связи, конечный продукт, условно чистая продукция и др.) выражены в трудовых измерителях.

Развитие основной модели межотраслевого баланса достигается также путем включения в нее показателей фондоемкости продукции. В простейшем случае модель дополняется отдельной строкой, в которой указаны в стоимостном выражении объемы производственных фондов Фj, занятые в каждой j-й отрасли. На основании этих данных и объемов валовой продукции всех отраслей определяются коэффициенты прямой фондоемкости продукции j-й отрасли:

(23)

Коэффициент прямой фондоемкости показывает величину производственных фондов, непосредственно занятых в производстве данной отрасли, в расчете на единицу ее валовой продукции. В отличие от этого показателя коэффициент полной фондоемкости Fj отражает объем фондов, необходимых во всех отраслях для выпуска единицы конечной продукции j отрасли. Если

— коэффициент прямых материальных затрат, то для коэффициента полной фондоемкости справедливо равенство, аналогичное равенству (18) для коэффициента полной трудоемкости:

(24)

Если ввести в рассмотрение вектор-строку коэффициентов прямой фондоемкости

и вектор-строку коэффициентов полной фондоемкости
, то систему уравнений (24) можно переписать в матричной форме:

(25)

откуда с помощью преобразований, аналогичных применяемым выше для коэффициентов трудоемкости, можно получить матричное соотношение

(26)

где

— матрица коэффициентов полных материальных затрат.

Для более глубокого анализа необходимо дифференцировать фонды на основные и оборотные, а в пределах основных — на здания, сооружения, производственное оборудование, транспортные средства и т.д.

Пусть в целом все производственные фонды разделены на m групп. Тогда характеристика занятых в народном хозяйстве фондов задается матрицей показателей

, отражающих объем фондов k-ой группы, занятых в j-й отрасли:

Коэффициенты прямой фондоемкости также образуют матрицу размерности тхп, элементы которой определяют величину производственных фондов k-й группы, непосредственно используемых при производстве единицы продукции у-й отрасли:

Для каждой j-й отрасли могут быть вычислены коэффициенты полной фондоемкости

, отражающие полную потребность в фондах k-й группы для выпуска единицы конечной продукции этой отрасли:

Решение систем данных уравнений позволяет представить коэффициенты полной фондоемкости по каждой из т групп фондов как функцию коэффициентов прямой фондоемкости:

В этих формулах величины

и
— уже известные коэффициенты прямых и полных материальных затрат.