Смекни!
smekni.com

Решение сфероидических треугольников (стр. 2 из 3)

(7)

Имея выражения для приведенных длин геодезических линий сферы и поверхности эллипсоида вращения, нетрудно теперь полу­чить по формуле (1) относительные линейные искажения.

Подставляя в числитель формулы (1) выражения (6) и(7) , а в знаменателе с достаточной точностью можно ограни­читься mэ ~ So, находим

Из этой формулы видно, что наибольшие линейные искажения будут при Во = 45° и Ао = 0°. Следовательно,

(8)

Формула (8) позволяет установить размеры области по­верхности эллипсоида, ограниченной геодезической окружностью, в пределах которой линейные искажения при отображении ее на сферу не могут превзойти наперед заданных величин.

Если, ориентируясь на точность первоклассных геоде­зических построений, принять (ΔS/S)max< 1*10-8 , то по формуле (8) находим радиус геодезической окружности, равный 133 км. А так как вписать в окружность радиуса 133 км можно треугольник со сторонами порядка 250-270 км то, следовательно, сфероидические треугольники со сторонами, не превышающими 270 км, можно решать как сферические, при этом относительные иска­жения их элементов не будут превышать 1*10-8. Радиус сферы, при решении таких треугольников, следует принимать равным среднему радиусу кривизны для центра тяжести сфероидического треугольника.

Решение сферических треугольников

Решение сферических треугольников, с точки зрения теории, не вызывает никаких затруднений и может быть выполнено с необ­ходимой степенью точности по различным формулам сферической тригонометрии.

В геодезии, в большинстве случаев, приходится решать тре­угольники, у которых известны: либо три угла и одна сторона (триангуляция), либо три стороны (триллатерация). Для таких случаев наиболее простым будет применение при решении формул синусов и косинусов сторон сферической тригонометрии.

Рис. 3

Выражая стороны сфери­ческого треугольника (рис.3) в частях радиуса сферы:

при заданных углах А, В, D и стороне а, находим:


(9)

или

(10)

Если в треугольнике известны все стороны, то на основании теоремы косинуса стороны, будем иметь:

(11)

или

(12)

Совершенно очевидно, приведенные алгоритмы - это не единственный путь решения сферических треугольников. Возможно использование и других формул сферической тригонометрии при решении тех же треугольников и с теми же самыми исходными дан­ными.

На практике решение треугольников непосредственно по фор­мулам сферической тригонометрии удобно и оправдано в том слу­чае, если это решение выполняется на ЭВМ. Если же оно ведется в ручную - не по программе на ЭВМ, а с использованием настольных средств вычислительной техники, то решение, непосредствен­но, по формулам сферической тригонометрии становится практически громоздким. Действительно, в этом случае приходится с большой степенью точности вычислять ряд вспомогательных вели­чин (R, a/R, sin (a/R), sin (b/R)), которые в конечном итоге не нужны.

Для решения малых сферических треугольников с использова­нием настольной вычислительной техники разработаны два спосо­ба: способ аддитаментов и способ решения сферических треуголь­ников c применением теоремы Лежандра.

Способ аддитаментов

Суть способа заключается в замене решения сферического треугольника решением плоского с углами, равными углам сфери­ческого треугольника, и измененной (на аддитамент) исходной стороной с последующим введением в полученные из решения плос­кого треугольника стороны поправок (аддитаментов).

Рассмотрим теоретические основы этого способа.

Полагая, что стороны сферического треугольника - малые величины (S < 200 км), по сравнению с радиусом сферы, разложим синусы сторон в выражении (9) в ряд, ограничиваясь членами пятого порядка малости:

Откуда, с той же степенью точности, .находим

(13)

где

Обозначая:

(14)

тогда выражение (13) примет вид:

(15)

или

где

(16)

По аналогии, без вывода, можно написать формулы и для вычисле­ния стороны d:

(17)

Формулы (14)-(17) позволяют решать сферические тре­угольники со сторонами S< 250 км. При этом ошибки вычисления сторон не будут превосходить 0.0005 м.

Если стороны треугольников не превышают 100 км, то, при той же точности вычисления, в формулах (14) - (17) можно отбросить малые поправочные члены и вычисления вести по формулам:

(18)

Рабочие формулы:


R=6371116 м

тр.

Вер-

шина

Углы сфериче-

ского треуго-

льника

Уравненные

углы

Синусы углов Условные сторы (S') AS
I

D

B

A

81°29'09,117"

45°48'31,438"

52°42'23,540"

-1,111"

-1,111"

-1,111"

81°29'08,006"

45°48'30,327"

52°42'22,429"

0,98897857

0,71701311

0,79553937

22879,562

16587,767

18404,435

0,049

0,019

0,025

Σ

ε

W

180°00'04,095"

00,762"

03,333"

-3,333"

180°00'0,762"

II

D

B

С

46°40'25,875"

68°03'27,593"

65°16'06,893"

0,091"

0,091"

0,092"

46°40'25,966"

68°03'27,684"

65°16'06,985"

0,72746003

0,92756057

0,90827908

14740,504

18795,136

18404,435

0,013

0,027

0,025

Σ

ε

W

180°00'00,361"

0,635"

-0,274"

0,274"

180°00'00,635"

Решение сферических треугольников с применением теоремы Лежандра

В 1787 г. А. Лежандр доказал теорему, которая в последую­щем была положена в основу решения сферических треугольников со сторонами, не превышающими 200 - 220 км. Достоинством тако­го решения является то, что в этом случае решение сферического треугольника заменяется решением плоского треугольника со сто­ронами, равными соответствующим сторонам сферического треу­гольника, но измененными углами. Изменения сферических углов при переходе к углам плоского треугольника вычисляются на ос­новании теоремы Лежандра, которая гласит: если сферический треугольник заменить плоским с теми же сторонами, то углы плоского треугольника будут равны соответствующим углам сфери­ческого треугольника, уменьшенным, на одну треть сферического избытка.

Доказательство теоремы Лежандра

Пусть дан сферический треугольник ABD (рис. 3) и соот­ветствующий ему плоский треугольник A'B'D' (рис. 4) с теми же сторонами, но отличными углами А', В', D'.

Напишем очевидное соотношение

(19)

Рис. 4

Если соответствующие стороны сферического и плос­кого треугольников равны и не превосходят 200 км, то, веро­ятно, для сферы радиуса R = Rср = (MN)1/2 углы сферичес­кого и плоского треугольников будут отличаться на небольшие величины. Исходя из этого примем с ошибкой на величины второго порядка малости (если за первый порядок принять А - А'):