Нетрудно видеть, что r совпадает по знаку с
Если r > 0 (
Учитывая равенство (1.16), формулу для r представим в виде:
Отсюда видно, что формула для r симметрична относительно двух переменных, т.е. переменные Х и Yможно менять местами. Тогда аналогично формуле (1.24) можно записать:
Найдя произведение обеих частей равенств(1.24) и (1,25), получим:
или
т.е. коэффициент корреляции r переменных Х и Y есть средняя геометрическая коэффициентов регрессии, имеющая их знак.
Отметим основные свойства коэффициента корреляции (при достаточно большом объеме выборки n), аналогичные свойствам коэффициента корреляции двух случайных величин .
1. Коэффициент корреляции принимает значения на отрезке [-1; 1], т.е.
В зависимости от того, насколько
2. Если все значения переменных увеличить (уменьшить) на одно и то же число или в одно и то же число раз, то величина коэффициента корреляции не изменится.
3. При r = ± 1 корреляционная связь представляет линейную функциональную зависимость. При этом линии регрессии Y по Х и Х по Y совnадают и все наблюдаемые значения располагаются на общей прямой.
4. При r = 0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общими средними, а линии регрессии Y по X и X по Y параллельны осям координат. Равенство r = 0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелированности переменных), но не вообще отсутствии корреляционной, а тем более статистической зависимости. Выборочный коэффициент корреляции r является оценкой генерального коэффициента корреляции ρ (о котором речь пойдет дальше), тем более точной, чем больше объем выборки п. И указанные выше свойства, строго говоря, справедливы для ρ. Однако при достаточнобольшом nих можно распространить и на r.
Корреляционный анализ (корреляционная модель)– метод, применяемый тогда, когда данные наблюдений или эксперимента можно считать случайными и выбранными из совокупности, распределенной по многомерному нормальному закону.
Основная задача корреляционного анализа, как отмечено выше, состоит в выявлении связи между случайными переменными путем точечной и интервальной оценок различных (парных, множественных, частных) коэффициентов корреляции. Дополнительная задача корреляционного анализа (являющаяся основной в регрессионном анализе) заключается в оценке уравнений регрессии одной переменной по другой.
Рассмотрим простейшую модель корреляционного анализа – двумерную. Плотность совместного нормального распределения двух переменных Xи Yимеет вид:
ρ- коэффициент корреляции между переменными X и Y, определяемый через кореляционный момент (ковариацию)
ρ=
Величина ρ характеризует тесноту связи между случайными переменными X и Y. Указанные параметры
Введенный выше коэффициент корреляции, как уже отмечено, является полноценным показателем тесноты связи лишь в случае линейной зависимости между переменными. Однако часто возникает необходимость в достоверном показателе интенсивности связи при любой форме зависимости.
Для получения такого показателя воспользуемся правилом сложения дисперсий:
где
Остаточной дисперсией измеряют ту часть колеблемости Y, которая возникает из-за изменчивости неучтенных факторов, не зависящих от Х. Межгрупповая дисперсия выражает ту часть вариации Y, которая обусловлена изменчивостью Х. Величина
получила название эмпирического корреляционного отношения Yпо Х. Чем теснее связь, тем большее влияние на вариацию переменной Yоказывает изменчивость Х по сравнению с неучтенными факторами, тем выше
Отметимосновные свойства корреляционных отношений:
1. Корреляционное отношение есть неотрицательная величина, не превосходящая единицу: 0
2. Если η=0, то корреляционная связь отсутствует.
3. Если η=1, то между переменными существует функциональная зависимость.
4.
Эмпирическое корреляционное отношение