Вместе с тем на практике часто встречаются с необходимостью изучения связи между ординальными (порядковыми) переменными, измеренными в так называемой порядковой шкале. В этой шкале можно установить лишь порядок, в котором объекты выстраиваются по степени проявления признака (например, качество жилищных условий, тестовые баллы, экзаменационные оценки и т.п.). Если, скажем, по некоторой дисциплине два студента имеют оценки «отлично» И «удовлетворительно», то можно лишь утверждать, что уровень подготовки по этой дисциплине первого студента выше (больше), чем второго, но нельзя сказать, на сколько или во сколько раз больше.
Оказывается, что таких случаях проблема оценки тесноты связи разрешима, если упорядочить, или ранжировать, объекты анализа по степени выраженности измеряемых признаков. При этом каждому объекту присваивается определенный номер, называемый рангом. Например, объекту с наименьшим проявлением (значением) признака присваивается ранг 1, следующему за ним – ранг 2 и т.д. Объекты можно располагать и в порядке убывания проявления (значений) признака. Если объекты ранжированы по двум признакам, то имеется возможность оценить. тесноту связи между признаками, основываясь на рангах, Т.е. тесноту ранговой корреляции.
Коэффициент ранговой корреляции Спирмена находится по формуле:
где
Если ранги всех объектов равны, то ρ=1, т.е. при полной прямой связи ρ=1. При полной обратной связи, когда ранги объектов по двум переменным расположены в обратном порядке ρ=-
При ранжировании иногда сталкиваются со случаями, когда невозможно найти существенные различия между объектами по величине проявления рассматриваемого признака. Объекты, как говорят, оказываются связанными. Связанным объектам приписывают одинаковые средние ранги, такие, чтобы сумма всех рангов оставалась такой же, как и при отсутствии связанных рангов.
При наличии связанных рангов ранговый коэффициент корреляции Спирмена вычисляется по формуле:
где
Коэффициент ранговой корреляции Кендалла находится по формуле:
где K статистика Кендалла.
Для определения Kнеобходимо ранжировать объекты по одной переменной в порядке возрастания рангов (1, 2, ... , n) и определить соответствующие их ранги (
Коэффициент конкордации (согласованности) рангов Кендалла W, определяемый по формуле:
где n число объектов;
m число анализируемых порядковых переменных;
отклонение суммы рангов объекта от средней их суммы для всех объектов, равной m(n+1)/2.
Значения коэффициента W заключены на отрезке т.е. , причем W=1 при совпадении всех ранжировок.
Корреляционный анализ может быть использован и при оценке взаимосвязи качественных (категоризованных) признаков (переменных), представленных в так называемой номинальной шкале, в которой возможно лишь различение объектов по возможным состояниям, градациям (например, пол, социальное положение, профессия и т.п.). Здесь в качестве соответствующих показателей могут быть использованы коэффициенты ассоциации, контингеници (сопряженности), бисериальной корреляции.
В регрессионном анализе рассматривается односторонняя зависимость случайной зависимой переменной Y от одной (или нескольких) неслучайной независимой переменной Х, называемой часто объясняющей переменной. Такая зависимость может возникнуть, например, в случае, когда при каждом фиксированном значении X соответствующие значения Y подвержены случайному разбросу за счет действия неконтролируемых факторов. Указанная зависимость Y от X (иногда ее называют регрессионной) может быть представлена также в виде модельного уравнения регрессии (1.1). В силу воздействия неучтенных случайных факторов и причин отдельные наблюдения y будут в большей или меньшей мере отклоняться от функции регрессии
Рассмотрим линейный регрессионный анализ, для которого функция
Предположим, что для оценки параметров линейной функции регрессии (2.1) взята выборка, содержащая n пар значений переменных (
Отметим основные предпосылки регрессионного анализа:
1. В модели (2.2) возмущение
2. Математическое ожидание возмущения
(или математическое ожидание зависимой переменной
M(
3. Дисперсия возмущения
(или D(
4. Возмущения (или переменные и) не коррелированы.
5. Возмущение