Смекни!
smekni.com

Математичне програмування в економіці (стр. 6 из 6)


а12у122у2 + а32у3 = 20 × 12 + 3 × 60 + 60 × 0 = 420,

водночас вартість другого виробу складає 250; тобто збиток = 420 – 250 = 170.

Арифметична перевірка задач.

Основна задача:

15 × 60 + 20 × 0 + 2,5 × 12 = 1200;

2 × 60 + 3 × 0 + 2,5 × 12 = 150;

35 × 60 + 60 × 0 + 60 × 12 = 2820 < 3000№

х4 = 0;

х5 = 0;

х6 = 180 > 0;

у1 = 12 > 0;

у2 = 60 > 0;

у3 = 0;

Двоїста задача:

15 × 12 + 2 × 60 + 35 × 0 = 300;

20 × 12 + 3 × 60 + 60 × 0 = 420 250;

25 × 12 + 2,5 × 60 + 60× 0 = 450;

у4 = 0;

у5 = 170 > 0;

у6 – 0;

х1 = 60 > 0;

х2 = 0;

х3 = 12 > 0.

Стійкість оптимальних планів прямої та двоїстої задач обумовлені зміною обмежень “D С2 < 170;” “DСj, які не викликають порушень умов оптимізму. У нашому прикладі D b3 = D b1 = 0. Це позначає, що збільшення без обмежень, та зменшення менш ніж на 180 енерговитрат не змінює оптимального плану задачі.

У оптимальному плані двоїстої задачі значення змінної (уі*) чисельно дорівнює частковій похідній функції

jmax (b1,b2, . . ,bm) за аргументом “уі”ю. тобто

¶ j max = yi*.

bi

Це вочевидь співвідношення вказує на те, що зміна “bі” викликає зміну j max, яка визначається зміною “уі”. Але на прикладі ми бачили, що як обмеження не є критичним, так зміна “bі” ресурсу у околиці оптимального плану не викликає зміни цільової функції. Тому важливо визначити інтервали зміни кожного з вільних членів системи обмежень основної задачі. або коефіцієнтів цільової функції двоїстої задачі, у яких оптимальний план двоїстої задачі не змінюється. Це має місце для усіх значень (bi + Dbi), при котрих стовпець вектора Р0останньої симплекс-таблиці розв’язання основної задачі не містить від’ємних чисел, тобто коли серед компонентів вектора

b1 + Db1

b2 + Db2

.bn + Dbn

відсутні від’ємні значення. Матриця В-1 – це зворотня матриці В яка утворена з компонентів векторів базису, що визначає оптимальний план основної задачі лінійного програмування.

Таким чином, якщо знайдено оптимальне рішення основної задачі лінійного програмування, так не важко провести аналіз стійкості двоїстих оцінок відносно зміні “bi”, оцінити ступінь впливу змінення “bi” на оптимальне значення цільової функції основної задачі, а також обрати найбільш ефективний варіант можливих змін “bi”.


Література

Основна:

1. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов. – М.: Высш. шк., 1986. – 319 с.

2. Бугір М.К. Математика для економістів. Лінійна алгебра, лінійні моделі. Посібник для студентів вищих навчальних закладів. – К.: Видавничий центр “Академія”, 1998 – 272 с.

3. Вітлінський В.В., Наконечний С.І. Ризик у менеджменті. – К.: ТОВ “Борисфен – М”, 1996. – 336 с.

4. Справочник по математике для экономистов / В.Е.Барбогумов, В.И.Ермакова, Н.Н.Кривенцова и др.; Под ред. В.И. Ермакова. – 2 изд., перераб. и доп. – М.: Высш. шк., 1997. – 384 с.

Додаткова:

5. Банди Б. Методы оптимизации. Вводный курс: Пер. с англ. – М.: Радио и связь, 1988. – 128 с.

6. Численные методы в экстремальных задачах. Пшеничный Б.Н., Данилин Ю.М., Главная редакция физико-математической литературы издательства «Наука», 1975. – 319 с.

7. Численные методы. Н.Н. Калиткин. Главная редакция физико-математической литературы издательства «Наука», М., 1978. – 512 с.

8. Юдин Д.Б. Задачи и методы стохастического программирования. М., 1979. – 345 с.

9. Мажид К.И. Оптимальное проектирование конструкций. Лондон, 1974, пер. с англ. – М.: Высш. шк., 1979. – 237 с.

10. Грешилов А.А. Как принять наилучшее решение в реальных условиях. – М.: Радио и связь, 1991. – 320 с.