Лемма доказана.
Лемма 3.1.7 Пусть группа с силовским множеством , – подгруппа группы . Если подгруппа –квазинормальна, то сама подгруппа будет –квазинормальной для любого элемента группы .
Доказательство. По условию
, для любой подгруппы , произвольного элемента . Рассмотрим произведениеТак как
– подгруппа группы , то – подгруппа, поэтому , то есть – –квазинормальная подгруппа группы .Лемма доказана.
Пусть
– силовское множество группы . Выше пересечение определялось для нормальной подгруппы группы . В этом случае по лемме 3.1.5 пересечение является силовским множеством группы . Если – произвольная, не обязательно нормальная, подгруппа группы , то положим . Отметим, что в этом случае может не быть силовским множеством группы .Лемма 3.1.8 Пусть – группа, – ее силовское множество. Если – –квазинормальная подгруппа группы , причем и индекс в группе примарный, то – примарная группа.
Доказательство. Пусть
и пусть . Так как – –квазинормальная подгруппа, то – подгруппа группы для каждого . По теореме об индексахгде
, . Для каждого имеем , то есть и . Но по условию , поэтому и – –группа.Лемма доказана.
Лемма 3.1.9 Пусть – нормальная подгруппа группы . Если – циклическая –подгруппа факторгруппы , то существует элемент такой, что – –подгруппа и .
Доказательство. Пусть
– минимальное добавление к подгруппе в группе . Тогда по лемме 2.3.23, поэтому является -группой. Так как и циклическая, тогда – циклическая подгруппа, то есть подгруппа из для некоторого .Лемма доказана.
3.2 Дисперсивность и сверхразрешимость факторизуемых групп
Будем использовать запись
для обозначения некоторого силовского множества группы .Теорема 3.2.1 Пусть группа , где подгруппы и дисперсивны по Оре. И пусть и – силовские множества подгрупп и . Если циклические примарные подгруппы из –квазинормальны, а циклические примарные подгруппы из –квазинормальны, то группа дисперсивна по Оре.
Доказательство. Предположим, что теорема неверна. Тогда существуют группы, удовлетворяющие условию теоремы и не удовлетворяющие ее заключению. Пусть
– не дисперсивная по Оре группа наименьшего порядка, для которой все условия теоремы выполняются. Тогда для любой неединичной нормальной подгруппы факторгруппа является произведением своих подгрупп и . Так как и , то подгруппы и дисперсивны по Оре. Рассмотрим их силовские множества. Ввиду леммы 2.1.5 силовские множества подгрупп и соответственно равны множествам и .