cond(Li) > 1
cond(U) D
i , |a(iii)| < 1cond(
|aii , |a(iii)| > 1
cond(Di) cond(U)
cond(A)
Li Di
“
a11x1 + a12x2 + ... + a1mxm = b1 a21x1 + a22x2 + ... + a2mxm = b2
..............................
am1x1 + am2x2 + ... + ammxm = bm
U
xk
A
ai,n+1 = bi
k 1 m − 1
i k + 1 m + 1
r := aik/akk
j k + 1 m + 1
aij := aij − r akj
j
i
k
xn := an,n+1/an,n
k n − 1 1
xk := ak,n+1 − P akjxj!/akk
n
j=k+1
k
Ux = y
cond(A)
Ux = y U
A
k xk
|aln|(k) = 6max6 |aij|(k) k l k n
k i,j m
k n
x∗
x(1)
kr(1)k 6 ε x(1)
ε
A
A = QR,
Q R
Aa25 a35 a45 a55
a15
12 12 cosϕ1212 −sinϕ1212 0 0 0 sinϕ cosϕ 0 0 0Q (ϕ ) =0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
A12 = Q12A
12 a1111 cosϕ1212 −514131a2121 sinϕ1212 ·524232 · · a1515 cosϕ1212 − a2525 sinϕ12 a sinϕ + a cosϕ · · · a cosϕ + a sinϕ12A =a a · · ·
a a · · · a a · · ·ϕ12
A12a11 sinϕ12 + a21 cosϕ12 = 0.
A1
Q3 Q4
A4 = Q4 · Q3 · Q2 · Q1A
A m × m
Am−1 = Qm−1 · ... · Q1 · A = Qe · A,
e
Q Am−1
A = QR Q = Qe−1 R = Am−1
QR A
v =m
Av1 = (a11,a21,...,am1)T
P1 m × m
a(1)12mm a(1)
mm·
·
a(1)
m − 1 v2
,Am−1
Q
PiT i = 1,...,m − 1 Q
A = QR Q
R
Ax = b
Rx = QTb
cond(A) = cond(R)
A Qij i
j
b(1)ik = bik cosϕij − ajk sinϕij
k = 1,...,m.
(1)
bjk = bik sinϕij + ajk cosϕij
Q Am−1 = R
QR
A
QR
i ki
i
R = Am−1
A = Q Ri
Am−1
Am−1
QR
Qij
O(2m3)
QR
Pi m × m
A = A∗
A = L U.
A = L U = A∗ = U∗ L∗ ⇒ L U = U∗ L∗ ⇒ U (L∗)−1 = L−1 U∗.
U (L∗)−1 = L−1 U∗ = D ⇒ U = D L∗ ⇒ A = L D L∗.
,D = diag(
A
L
k > i
i = 1
a1j = aj1 = l11d11lj1,
LU
LU
QR A
lQR
x(0) x∗
A x = b
“ “ x(n)
kx(n) − x∗k
O(m2)
Bb, n = 1,2,...
x(n)
x∗
n → ∞x(n)
τn = τ
τn n = 1,2,... B
B−1
x(n)
ε
n = n(ε)
.ε
τn n = 1,2,...r(n) n
τn = τ
r(n) = Sr(n−1) = S Sr(n−2) ... = Snr(0).
S
S
kSk 6 1