Смекни!
smekni.com

Вычислительные методы линейной алгебры (стр. 3 из 5)

cond(Li) > 1

cond(U) D

i , |a(iii)| < 1

cond(

 |aii , |a(iii)| > 1

cond(Di) cond(U)

cond(A)

Li Di

a11x1 + a12x2 + ... + a1mxm = b1 a21x1 + a22x2 + ... + a2mxm = b2

..............................

am1x1 + am2x2 + ... + ammxm = bm

U

xk

A

ai,n+1 = bi

k 1 m − 1

i k + 1 m + 1

r := aik/akk

j k + 1 m + 1

aij := aij r akj

j

i

k

xn := an,n+1/an,n

k n − 1 1

xk := ak,n+1 − P akjxj!/akk

n

j=k+1

k

Ux = y

cond(A)

Ux = y U

A

k xk

|aln|(k) = 6max6 |aij|(k) k l k n

k i,j m

k n

x

x(1)

kr(1)k 6 ε x(1)

ε

A

A = QR,

Q R

A

a25 a35 a45 a55

a15 

12 12  cosϕ1212 −sinϕ1212 0 0 0  sinϕ cosϕ 0 0 0

Q (ϕ ) =0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

A12 = Q12A

12  a1111 cosϕ1212 −514131a2121 sinϕ1212 ·524232 · · a1515 cosϕ1212 − a2525 sinϕ12  a sinϕ + a cosϕ · · · a cosϕ + a sinϕ12

A =a a · · ·

a a · · · a a · · ·

ϕ12

A12

a11 sinϕ12 + a21 cosϕ12 = 0.

A1

Q3 Q4

A4 = Q4 · Q3 · Q2 · Q1A

A m × m

Am1 = Qm1 · ... · Q1 · A = Qe · A,

e

Q Am−1

A = QR Q = Qe−1 R = Am−1

QR A

v =

m

A

v1 = (a11,a21,...,am1)T

P1 m × m

a(1)12mm 

a(1)

mm· 

·

a(1)

m − 1 v2

,

Am−1

Q

PiT i = 1,...,m − 1 Q

A = QR Q

R

Ax = b

Rx = QTb

cond(A) = cond(R)

A Qij i

j

b(1)ik = bik cosϕij ajk sinϕij

k = 1,...,m.

(1)

bjk = bik sinϕij + ajk cosϕij

Q Am−1 = R

QR

A

QR

i k

i

i

R = Am1

A = Q R

i

Am−1

Am−1

QR

Qij

O(2m3)

QR

Pi m × m

A = A

A = L U.

A = L U = A= ULL U = ULU (L)1 = L1 U.

U (L)1 = L1 U= D U = D LA = L D L.

,

D = diag(

A

L

k > i

i = 1

a1j = aj1 = l11d11lj1,

LU

LU

QR A

l

QR

x(0) x

A x = b

“ “ x(n)

kx(n) − xk

O(m2)

B

b, n = 1,2,...

x(n)

x

n → ∞

x(n)

τn = τ

τn n = 1,2,... B

B−1

x(n)

ε

n = n(ε)

.

ε

τn n = 1,2,...

r(n) n

τn = τ

r(n) = Sr(n−1) = S Sr(n−2) ... = Snr(0).

S

S

kSk 6 1