Смекни!
smekni.com

Вычислительные методы линейной алгебры (стр. 1 из 5)






A x = b,

A m {Ab}


{Ab} A m

{Ab} A

m = 2

a11x1 + a12x2 = b1 a21x1 + a22x2 = b2

5x1 + 7x2 = 12,

7x1 + 10x2 = 17,

x1 = 1 x2 = 1 F

t = 2 β = 10 t

F β F

x1 = 2.4 x2 = 0 12 16.8

0 0.2 1.4 −1

F x1 = 2.4 x2 = 0

F



x Rm A m × m

,

kAk

kAk > 0 A 6= 0 kAk = 0 ⇔ A = 0

m × m

kAk

kAkα

kxkα kAkβ kxkα = kxkβ

E

E

Ax = b

A

b

A A + ∆A

x

.

,
.

(A + ∆A)−1 A1 = A1 A (A + ∆A)−1 A1 (A + ∆A) (A + ∆A)−1 = = A1 (A − (A + ∆A)) (A + ∆A)−1 = −A1 A (A + ∆A)−1.

δ(x) 6 cond(A)k∆Ak/kAk δ(x) 6 cond(

,

cond(A) = kA1k kAk

k∆Ak → 0

cond(A) = kA1k kAk

t t

O(2−t)

O(2t/2) O(2−t/2)

cond(A) = kA1k kAk

cond(A) ≥ 1 A A1 = E ⇒ 1 = kEk = kA A1k > kAk kA1k = cond(A) cond(c A) = cond(A) c cond(A B) 6 cond(A) cond(B) cond(A1) = cond(A)

max dii

cond(

D D = diag(dii)

16i6m

cond(A) = kAk2 kA1k2

cond(A)

A = A> 0

i = 1,...,m

Rm

,

.

b

.

εi

λl

A−1

A−1

ε

δ

A x = b,

x


aij

aij = 0 i > j (i < j)

U

UT U−1

UTU = UUT = E

|det(U)| = 1 1 = det(E) = det(UUT) =

det(U) det(UT) = det2(U)

1

Pij

i j

i j P24 5 × 5

0 0 0 1 0

 0

A

0
A
i j A

24  1 0 0 0 0 

P =0 0 1 0 0

0 1 0 0 0

Pij

Qij(ϕ)

i j

Q24(ϕ) 5 × 5

241 0 0 0 0 

 0 cosϕ 0 −sinϕ 0

Q (ϕ) =0 0 1 0 0

0 sinϕ 0 cosϕ 0

0 0 0 0 1

Qij

P

m

v1 > 0,

e = (1,0,...,0)T

v1 < 0.

,

u = vσkvke P

.

u1 u

P

y = αu + βs

Aij aij = 0 i > j + 1(i < j − 1)

,

α = 1.2.3