A x = b,
A m {Ab}
{Ab} A
m = 2
a11x1 + a12x2 = b1 a21x1 + a22x2 = b2
5x1 + 7x2 = 12,
7x1 + 10x2 = 17,
x1 = 1 x2 = 1 F
t = 2 β = 10 t
F β F
x1 = 2.4 x2 = 0 12 16.8
0 0.2 1.4 −1
F x1 = 2.4 x2 = 0
F
x ∈ Rm A m × m
,kAk
kAk > 0 A 6= 0 kAk = 0 ⇔ A = 0
m × m kAk
kAkα
kxkα kAkβ kxkα = kxkβ
E
E
Ax = b
∆A
b
A A + ∆Ax∗
. , .(A + ∆A)−1 − A−1 = A−1 A (A + ∆A)−1 − A−1 (A + ∆A) (A + ∆A)−1 = = A−1 (A − (A + ∆A)) (A + ∆A)−1 = −A−1 ∆A (A + ∆A)−1.
δ(x) 6 cond(A)k∆Ak/kAk δ(x) 6 cond(
, cond(A) = kA−1k kAkk∆Ak → 0
cond(A) = kA−1k kAk
t t
O(2−t)
O(2t/2) O(2−t/2)
cond(A) = kA−1k kAk
cond(A) ≥ 1 A A−1 = E ⇒ 1 = kEk = kA A−1k > kAk kA−1k = cond(A) cond(c A) = cond(A) c cond(A B) 6 cond(A) cond(B) cond(A−1) = cond(A)
max dii
cond(
D D = diag(dii)16i6m
cond(A) = kAk2 kA−1k2
cond(A)
A = A∗ > 0
i = 1,...,m
Rm
, .b
.εi λl
A−1
A−1ε “
δ
A x = b,
x
aij
aij = 0 i > j (i < j)
U
UT U−1
UTU = UUT = E
|det(U)| = 1 1 = det(E) = det(UUT) =
det(U) det(UT) = det2(U)
1
Pij
i j
i j P24 5 × 5
0 0 0 1 0
0 A | 0 | A | |
i | j | A |
P =0 0 1 0 0
0 1 0 0 0
Pij
Qij(ϕ)
i j
Q24(ϕ) 5 × 5
241 0 0 0 0
0 cosϕ 0 −sinϕ 0Q (ϕ) =0 0 1 0 0
0 sinϕ 0 cosϕ 0
0 0 0 0 1
Qij
P
m v1 > 0,e = (1,0,...,0)T
v1 < 0.
,
u = v−σkvke P
.u1 u
P
y = αu + βsAij aij = 0 i > j + 1(i < j − 1)
“
“
,α = 1.2.3