Смекни!
smekni.com

Использование критерия ДарбинаУотсона и оценка качества эконометрической модели с использованием (стр. 3 из 5)

Таким образом, доказано, что фактор Z является влияющим на фактор W, а фактор W является зависимым от фактора Z.

2 вопрос

Автокорреляция - статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом по времени.

Автокоррелированность ряда можно наблюдать, когда нарушено третье условие Гаусса-Маркова, т.е. условие независимости -

.

Чем дальше наблюдения друг от друга, тем меньше они коррелируют. Наиболее всего коррелируют соседние наблюдения.

Для проверки рядов на автокорреляцию первого порядка применяется критерий широко известной статистики Дарбина - Уотсона. (DW)

DW =

Можно показать, что в больших выборках имеет место сходимость

Поскольку справедливы неравенства -1 ≤ ρ ≤ 1, то значение статистики DW при больших Т будет находиться в интервале 0 ≤ DW ≤ 4.

Если автокорреляция отсутствует (ρ = 0), то значение DW будет близким к двум.

Если автокорреляция положительна, то DW < 2, если автокорреляция отрицательна, то DW > 2.

Статистика DW используется для проверки гипотезы Н0 : ρ = 0 против альтернативы Н1 : ρ > 0 или альтернативы Н1 : ρ < 0. Для статистики Дарбина – Уотсона критическое значение d* такое, что в случае DW > d* гипотеза Н0 принимается, как «определить невозможно». Это значение зависит от всей матрицы Х (матрицы наблюдаемых параметров). Однако Дарбин и Уотсон доказали, что существуют две границы, обычно обозначаемые dU и dL (причем dU > dL), которые зависят только от длины рядов, количества объясняющих переменных и уровня значимости, и такие, что dL < d* < dU. Интервал [dL; dU] называется зоной неопределенности. Итоговая методика представлена мною в виде рисунка:

1) 0 < DW < dL – присутствует положительная автокорреляция;

2) dL < DW < dU – область неопределенности;

3) dU < DW < 4 – dU – автокорреляция отсутствует;

4) 4 – dU < DW < 4 – dL - область неопределенности;

5) 4 – dL < DW < 4 – присутствует отрицательная автокорреляция.

В моей работе требовалось проверить ряд зависимой переменной W на автокоррелированность.



Исходный ряд W
∆ W
– модель трендового анализа
Остатки U трендовой модели анализа ∆ U для трендовой модели анализа
434,10000 405,94396 28,15604
587,90000 153,80000 477,0841018 110,81590 82,65986
545,30000 -42,60000 548,2242436 -2,92424 -113,74014
763,20000 217,90000 619,3643853 143,83561 146,75986
727,10000 -36,10000 690,5045271 36,59547 -107,24014
714,20000 -12,90000 761,6446689 -47,44467 -84,04014
883,20000 169,00000 832,7848107 50,41519 97,85986
879,00000 -4,20000 903,9249524 -24,92495 -75,34014
930,00000 51,00000 975,0650942 -45,06509 -20,14014
1354,00000 424,00000 1046,205236 307,79476 352,85986
1102,00000 -252,00000 1117,345378 -15,34538 -323,14014
1834,00000 732,00000 1188,48552 645,51448 660,85986
906,11000 -927,89000 1259,625661 -353,51566 -999,03014
1183,06600 276,95600 1330,765803 -147,69980 205,81586
1361,49500 178,42900 1401,905945 -40,41094 107,28886
1339,20400 -22,29100 1473,046087 -133,84209 -93,43114
1726,67000 387,46600 1544,186228 182,48377 316,32586
1246,91200 -479,75800 1615,32637 -368,41437 -550,89814
1170,78100 -76,13100 1686,466512 -515,68551 -147,27114
1743,18500 572,40400 1757,606654 -14,42165 501,26386
1933,86000 190,67500 1828,746795 105,11320 119,53486
2249,20900 315,34900 1899,886937 349,32206 244,20886
2519,10500 269,89600 1971,027079 548,07792 198,75586
1814,02300 -705,08200 2042,167221 -228,14422 -776,22214
1123,63300 -690,39000 2113,307363 -989,67436 -761,53014
3077,96600 1954,33300 2184,447504 893,51850 1883,19286
2558,11600 -519,85000 2255,587646 302,52835 -590,99014
3249,06600 690,95000 2326,727788 922,33821 619,80986
2155,53500 -1093,53100 2397,86793 -242,33293 -1164,67114
1817,58500 -337,95000 2469,008071 -651,42307 -409,09014
2436,77600 619,19100 2540,148213 -103,37221 548,05086
2153,27700 -283,49900 2611,288355 -458,01135 -354,63914
1417,66800 -735,60900 2682,428497 -1264,76050 -806,74914
1918,29100 500,62300 2753,568638 -835,27764 429,48286
2732,59700 814,30600 2824,70878 -92,11178 743,16586
3900,56000 1167,96300 2895,848922 1004,71108 1096,82286
2611,58000 -1288,98000 2966,989064 -355,40906 -1360,12014
2665,21000 53,63000 3038,129206 -372,91921 -17,51014
4307,07000 1641,86000 3109,269347 1197,80065 1570,71986
3286,84000 -1020,23000 3180,409489 106,43051 -1091,37014
3800,29000 513,45000 3251,549631 548,74037 442,30986
1782,05000 -2018,24000 3322,689773 -1540,63977 -2089,38014
3131,94000 1349,89000 3393,829914 -261,88991 1278,74986
2457,14000 -674,80000 3464,970056 -1007,83006 -745,94014
4883,67000 2426,53000 3536,110198 1347,55980 2355,38986
5774,59400 890,92400 3607,25034 2167,34366 819,78386
3318,55300 -2456,04100 3678,390482 -359,83748 -2527,18114
3223,76300 -94,79000 3749,530623 -525,76762 -165,93014

1. Статистика Дарбина – Уотсона для исходного ряда W:

DW =

= 0,568043736

Из таблицы значений констант Дарбина – Уотсона dU и dL на 5% уровне значимости с одним влияющим фактором при Т = 48 находим dL = 1,50; dU = 1,59.

Вывод: так как DW = 0,568043736 < 1,50 = dL, то делаем вывод о наличии в ряде W положительной автокорреляции.

С помощью построения модели линейного тренда постараемся избавиться от автокорреляции.

Модель линейного тренда имеет вид:

Вычисляем статистику Дарбина – Уотсона для остатков по модели линейного тренда:

DW =

= 1,843115542

Из таблицы значений констант Дарбина – Уотсона dU и dL на 5% уровне значимости с двумя влияющими факторами при Т = 48 находим dL = 1,46; dU = 1,63.

Вывод: Так как DW = 1,843115542 > 1,63 = dU и DW = 1,843115542 < 4 – 1,63 = 2,37 = 4 – dU, то делаем вывод об отсутствии в ряде Ut автокорреляции.

Заключение: Модель линейного тренда позволяет избавиться от автокорреляции ряда Ut.

3 вопрос

Методика вычисления коэффициентов а, b и с регрессионной зависимости

.

Шаг 1. Предварительный анализ. Математическая модель строится на основе следующей логической модели:

Зависимая переменная Факторы
W X, Y, Z

Далее вычисляются средние значения исходных рядов.

Шаг 2. Строится ковариационная матрица L = L [X; Y; Z; W]

При вычислении элементов ковариационной матрицы схема выбора аргументов функции КОВАР определена формулой L = L [X; Y; Z; W] и имеет следующий вид:

XX XY XZ XW
YX YY YZ YW
ZX ZY ZZ ZW
WX WY WZ WW

Шаг 3. Вычисление обратной матрицы. Она размещается на площадке того же размера, что и ковариационная матрица.

Элементы обратной матрицы имеют следующие обозначения:

Л11 Л12 Л13 Л14
Л21 Л22 Л23 Л24
Л31 Л32 Л33 Л34
Л41 Л42 Л43 Л44

Засвечивается площадка, на которой будет размещена обратная матрица, и которая будет совпадать по размеру с ковариационной матрицей. Вызывается функция МОБР. В качестве параметра Арг указывается адрес ковариационной матрицы. Одновременным нажатием трех клавиш: CTRL + SHIFT + ENTER дается команда на одновременное вычисление всех элементов обратной матрицы Л.

Шаг 4. Вычисление коэффициентов а, b и с регрессионной зависимости

.

Поскольку в заданной логической модели зависимой переменной является четвертый столбец (W), то коэффициенты а, b и с будут вычисляться по формулам:

a = -Л41/Л44 b = -Л42/Л44 с = -Л43/Л44

В моей работе коэффициенты:

a = – 726,022045 b = 2,846786592 с = 3,902613829

Оцененный ряд
t
799,1173637
945,4437967
1117,269068
967,2375038
916,6366705
935,1461501
1034,137686
1000,812456
1063,429954
1093,216886
1131,615033
1083,099645
1039,806389
1478,055819
1124,567706
1210,913219
1204,401395
1270,489403
1415,606965
1474,617739
2051,821526
1593,127141
1658,542161
1889,406138
1850,150248
2231,813541
1888,600979
2012,07483
2086,469922
2246,531592
2363,432552
2443,143732
2535,482062
2652,51183
2879,974844
3081,540325
3160,286872
3267,001668
3861,325656
3301,77932
3285,364063
3401,952718
3479,589956
3532,442981
3626,319715
3670,005424
3732,779683
3642,297672
2077,737292

4 вопрос