Условию
Ответ:
Пусть
Подберем
Подбором находим, что
Подставим
Перейдем к переменной
Подставив получившиеся значения переменной
Ответ:
Пример 2. Сколько решений имеет система уравнений
Здесь представлена так называемая циклическая система уравнений. Подобные системы часто предлагаются на вступительных экзаменах в вузы с повышенными требованиями по математике [30]. Решить эти системы, не зная специальных методов решения, очень сложно. В данном случае подбором устанавливается решение
Перепишем систему в виде
Докажем, что все числа
Решение с помощью тригонометрической подстановки
Положим
Условию
Ответ:
Алгебраическое решение
Выразим переменную
Выяснить количество корней полученного уравнения с помощью производной или другим способом чрезвычайно трудно, поэтому в данном случае самый эффективный способ решение – решение с помощью тригонометрической подстановки.
§3. Доказательство неравенств
Как правило, навыки решения и доказательства неравенств, за исключением квадратичных, формируются на более низком уровне, чем уравнений. Эта особенность имеет объективную природу: теория неравенств сложнее теории уравнений. Тем не менее, многие приемы и методы решения неравенств совпадают с приемами и методами решения уравнений. В том числе, к доказательству неравенств применим метод замены переменной. При этом замена переменных, входящих в неравенство, с одной стороны, сокращает число переменных, а с другой, позволяет привести неравенство к виду, более удобному для исследования его свойств.
Пример 1. Доказать, что
При
Решение с помощью тригонометрической подстановки
Для любых
Так как
Второй множитель всегда положительный, а первый не превосходит 0, поэтому все произведение не положительно.
Алгебраическое решение
Выполним решение с помощью тождественных преобразований. Для этого рассмотрим разность