Оба решения по простоте реализации не уступают друг другу. Решение с помощью тригонометрической подстановки может быть дано как один из возможных способов решения.
Пример 2. Известно, что
. Доказать, что [9].Решение с помощью тригонометрической подстановки
Так как сумма квадратов
и равна единице, то каждое из чисел и по абсолютной величине не превосходит единицы, и их можно рассматривать как синус и косинус некоторого угла. Поэтому законна подстановка .Аналогично
. Доказываемое неравенство запишется в виде .Алгебраическое решение
Алгебраическое решение в данном случае будет состоять в возведении обеих частей неравенства в квадрат и выполнении тождественных преобразований.
.Обычно неравенство
при заданных условиях доказывается, когда изучаются приложения комплексных чисел. Но еще до изучения комплексных чисел оно может быть рассмотрено с учащимися, причем доказательство с помощью тригонометрической подстановки довольнокомпактно.Единственное, на что в данном случае следует обратить внимание учащихся – полное обоснование введения подстановки.§4 Задачи на нахождение наибольшего и наименьшего значений функции.
Задачи, связанные с поиском наибольшего и наименьшего значений функции, неспроста пользуются большой популярностью у составителей экзаменационных заданий: чтобы решить подобную задачу, приходится комбинировать приемы и методы из весьма различных разделов школьного курса математики. Первое, что приходит в голову при решении подобных задач, – исследовать функцию на наибольшее и наименьшее значения с помощью производной. Но у такого подхода есть недостаток: во многих задачах вступительных экзаменов в вузы с повышенными требованиями по математике этот привычный путь решения сопряжен со значительными техническими трудностями. В условиях конкурса этот недостаток особенно ощутим. Часто, однако, удается избавиться от громоздких выкладок, применяя понятия и навыки из других разделов школьного курса математики. Например, из тригонометрии.
Пример 1. Найти наибольшее и наименьшее значение выражения
в области [25].Решение с помощью тригонометрической подстановки
Уравнение
преобразуем так, чтобы в левой части получилась сумма квадратов: . Следовательно, каждое из выражений и по модулю не превосходит единицы и их можно рассматривать как синус и косинус некоторого угла. Положим . Выразим через одну величину : .Ответ: наибольшее значение равно
, наименьшее значение равно .Алгебраическое решение
Уравнение
преобразуем так, чтобы в левой части получилась сумма квадратов: . Нам нужно найти наибольшее и наименьшее значения выражения в точках окружности , то есть окружности с центром в точке и радиусом . Пусть в точке с координатами выражение принимает наибольшее значение, тогда справедлива система
.
Так как ищем наибольшее значение выражения
, то выбираем . .Тогда наибольшее значение выражения
равно .Аналогично находим, что наименьшее значение выражения
равно .Ответ: наибольшее значение равно
, наименьшее значение равно .Пример 2. Найти наименьшее и наибольшее значения выражения
, если [24].Решение с помощью тригонометрической подстановки
Уравнение
преобразуем так, чтобы в левой части получилась сумма квадратов: .Имеем, что сумма квадратов
и равна единице, поэтому каждое из этих выражений по модулю не превосходит единицы и их можно рассматривать как синус и косинус некоторого угла. Вот почему можно положить . Выразим сумму квадратов через одну величину : .Ответ: наименьшее значение
, наибольшее значение .Алгебраическое решение
Иногда уравнения с параметрами возникают при решении задач, казалось бы, не имеющих к ним никакого отношения. Если требуется найти, например, наименьшее значение функции
, ответ можно получить, если найти множество всех ее значений. Хотя это и более общая задача, но ее решение оказывается более простым. Причем число будет значением функции тогда и только тогда, когда уравнение имеет хотя бы один корень. Поэтому требуется найти все такие значения параметра и среди них выбрать наименьшее число. Это число и будет наименьшим значением функции [37]. Реализуем сказанное для решения данной задачи другим способом.