Смекни!
smekni.com

Устойчивость систем дифференциальных уравнений (стр. 12 из 12)

Теорема 6. (см. теорему 6 п. 2.6). Если среди собственных чисел матрицы имеются такие, вещественные части которых положительны, и выполнено условие (12), то решение

уравнения (1) неустойчиво.

Доказательство. С помощью леммы 3 построим квадратичную форму

, удовлетворяющую уравнению
, и такую, что область
для функции V непуста. Составим DV в силу уравнения (1). Имеем

.

Используя (12), как и при доказательстве теоремы 5, покажем, что если a достаточно мало, то при

функция
. Следовательно, так как в области
, то при
,
имеем
. Таким образом, выполнены все условия теоремы 4, откуда и следует, что нулевое решение уравнения (1) неустойчиво. Теорема доказана.

Список литературы

Метод функций Ляпунова в анализе динамики систем. Сб. статей. Новосибирск: Наука, 1987.

М. Розо. Нелинейные колебания и теория устойчивости. М.: Наука, 1971.

Б. П. Демидович. Лекции по математический теории устойчивости. М.: Наука, 1967.

И. Г. Петровский. Лекции по обыкновенным дифференциальным уравнениям. М.: Наука, 1964.

Ю. Н. Бибиков. Курс обыкновенных дифференциальных уравнений. М.: Высшая школа, 1991.

В. И. Арнольд. Обыкновенные дифференциальные уравнения. М.: Наука, 1975.

Кузнецов С. П. Динамический хаос (курс лекций). М.: Изд. ФМЛ, 2001.