Картина расположения траекторий при
, имеющая специальное название — узел, изображена на рис. 1а.2)
вещественны и . Полученные в случае узла формулы сохраняют силу. Соответствующая геометрическая картина, называемая седлом, изображена на рис. 1б.3)
комплексно-сопряженные. Пусть . В преобразовании X = SY , где и — линейно независимые собственные векторы, соответствующие и . Так как А вещественна, и можно выбрать комплексно-сопряженными. Тогда и . Положим , , а в качестве фазовой плоскости возьмем . Переменная связана с Х соотношением X = SY = = STZ = QZ, где , . Следовательно, Q — вещественная неособая матрица. Преобразование приводит к видугде матрица коэффициентов образует вещественную жорданову форму матрицы А.
Введем полярные координаты
, или , . Имеем: . Отделяя вещественные и мнимые части, получим: .Следовательно,
. При траектории образуют спирали (рис. 1в). Такое положение траекторий называется фокусом. При все траектории — окружности. В этом случае получаем центр. В случае центра все решения системы (3) периодические с периодом 2/.4)
. Жорданова форма матрицы А имеет треугольный вид, а система преобразуется к виду
Решением этой системы будет функция
. В зависимости от формы матрицы J получаются два случая: или вырожденный узел (рис. 1г), либо звездный (дикритический) узел. Дикритический узел возможен лишь в случае системыРис. 1. Поведение траекторий в зависимости от значений собственных чисел
1.5. Линейные однородные системы с периодическими коэффициентами.
В данном пункте излагается так называемая теория Флоке.
Будем рассматривать систему вида
(4)где
, а матричная функция P(t) удовлетворяет условию P(t + ) = P(t), >0 при всех . Такие матричные функции будем называть периодическими с периодом или -периодическими.Теорема Флоке. Фундаментальная матрица системы (4) имеет вид
где G — -периодическая матрица, R — постоянная матрица.
Матрица В, определяемая равенством
, называется матрицей монодромии. Для нее справедливо . Она определяется с помощью фундаментальной матрицы неоднозначно, но можно показать, что все матрицы монодромии подобны. Часто матрицей монодромии называют ту, которая порождается нормированной при фундаментальной матрицей , то есть .Собственные числа
матрицы монодромии называются мультипликаторами уравнения (4), а собственные числа матрицы R — характеристическими показателями. Из определения R имеем , при этом простым мультипликаторам соответствуют простые характеристические показатели, а кратным — характеристические показатели с элементарными делителями той же кратности.Характеристические показатели определены с точностью до
. Из и формулы Лиувилля следует, что .Название мультипликатор объясняется следующей теоремой:
Теорема. Число является мультипликатором уравнения (4) тогда и только тогда, когда существует ненулевое решение
этого уравнения такое, что при всех t .Следствие 1. Линейная периодическая система (4) имеет нетривиальное решение периода тогда и только тогда, когда по меньшей мере один из ее мультипликаторов равен единице.
Следствие 2. Мультипликатору
соответствует так называемое антипериодическое решение периода , т. е. . Отсюда имеем:Таким образом,
есть периодическое решение с периодом . Аналогично, если (p и q — целые, ), то периодическая система имеет периодическое решение с периодом .Пусть
, где — матрица из теоремы Флоке, — ее жорданова форма. По теореме Флоке , или , (5)где
— фундаментальная матрица, — -периодическая матрица. В структуре фундаментальной матрицы линейной системы с периодическими коэффициентами характеристические показатели играют ту же роль, что и собственные числа матрицы коэффициентов в структуре фундаментальной матрицы линейной системы с постоянными коэффициентами.Пример. Рассмотрим дифференциальное уравнение второго порядка
, (6)
где
— -периодическая вещественная скалярная функция. Мультипликаторами уравнения (6) будем называть мультипликаторы соответствующей линейной системы, т. е. системы