Смекни!
smekni.com

Аддитивные проблемы теории чисел (стр. 4 из 5)

Œ Œ Ł Ł Ø ŁŁ Łæ º, Œ ßı æ Ł æ æº º æ Ł º Ø º æ Ł, æ ø æ º æ Œ æ Ł Ł Ł ßı æº -

º æ Ø ßı æº º æ Ø æ º Ł º Ø º æ . ´ ø º

Ł Łª ß ł , æ ø Œ ßı Œ ß æ º Ł º æ

d(Ai). ŒŁ æ æ Æ ¸. ˆ. Ł º Œ æ Ł æ Ł -

º ßı Łæ º Ł æ ß ª Ł ª Łæº æ ßı æº ª ßı, . ´. ¸Ł ŁŒ

Ø º ł Ł ƺ ß ´ Ł ª .

º ß ß ł , Ł º øŁ ´. ´ Ł . º Æ ª , Ł

Ł Ł Ø ŁŁ Łæ º Œ º , æ ß Œ æ ß

ºŁ Ł æŒŁ æ æ . ˛ Œ ŁÆ º Œ ß ł Ł Œ ßı Ł Ł Ø ŁŁ Łæ º º æ Œ ÆŁ Ł Ł ºŁ Ł æŒŁı Ł º ßı . ´ ı ł Ł Ł ßæ Ł Ł æ ßı Łæ º Ł º ª

( ł æ ) æ æ æ æ Œ æ Ł æº º æ Ø. Œ, ßæ Ł Ł æ º Ø æ Ł æº º æ Ø {m} Ł

{2n - m} æ ßı Łæ º, 6 nθ1 Ł, æ æ 6 nθ2 ª (θ1 < 1 Ł θ2 < 1 º øŁ

Æ ßÆ ß º Ł º ß Œ æ ß), Ł Ł Œ ł Ł Œ ß Ø

Œ Ł ƺ ß ˆ º Æ ı - غ æ º ŁŁ ª Łæº æ Ø ı Łæ º, Ł Œ ßı Ł Æ º k1, ª - Æ º k2 æ ßı Ł º Ø.

2.2.1 º Æ ª .

º Æ ª - æ Ł º ßØ Ł æ Ł æ º ßØ ł -

, æ ßØ º º Æ ª . — ł º Æ ª º ı ł Ł æ ı æ Ł ø Œ Ł S(;,z), Æ ø Œ ºŁ æ º Œ ª -

æ A ºßı Łæ º, Œ ß º æ æ ß Łæº p < z Ł Ł º Œ æ P æ ßı Łæ º.

ˇ æ P(z) = Qp<z,pP p. º Æ ª æ Ł æ

,

Œ Ł l1 = 1 º Ł º ßı Øæ Ł º ßı Łæ º. ¨ º Æ -

ª æ æ Ł , Æß, º Ł ld = 0 º d > z, Ł Ł Ł Ł æ æ º ø ª ßÆ æ łŁıæ Łæ º λd(2 6 d < z).

´ Œ ÆŁ ŁŁ æ ªŁ Ł Ł ł ł º Æ ª º º

ŒŁ æ Ł , æ Æ æŁº ß Ł Łæ º ŁŁ æ ßı Œ ŁØ.

2.2.2 — ł æ .

— ł æ - , Æ ßØ æ (3 . . .) Ł º øŁØ æ Ł æ æ ß Łæº Ł º ª . ø æ æ

Œº æ æº ø . ˙ ŒŁ æ Ł Ł . Łæº 2 - æ . ˙ ŒŁ æ æ º ß Łæº , º øŁ æ 2. Łæº 3 - Œ Łæº - Æ æ ß . ˜ º ŒŁ æ æ º ß Łæº , Œ- ß º æ Ł

2 Ł 3. Łæº 5 - Œ Łæº - Æ æ ß . ˇ º º -

ªŁ ß ß Łæº Ł , Ø Ł æŒ º ª Æ º ł Ø Œ æº º æ Ł æ ßı Łæ º. — ł æ łº Ł Ł ªŁı Æ º æŁº ßı ı ł ( Ł ł ´ ).

2.3 ˜Łæ æŁ ßØ .

´ 1959 . ´. ¸Ł ŁŒ Æߺ Æ ˜Łæ æŁ ßØ . ˛ Ł Ł ŁŁ Łæ º º ł Ł Œ ßı ÆŁ ßı ŁØ (ÆŁ ßı Ł Ł ßı ƺ

) Ł

α + β = n,

ª α Ł β Ł º Œ æ ª æ ß Ł ı ł æ º ß Ł Ł æŒŁı ª ææŁ ı æº º æ º ßı Łæ º. ˜Łæ æŁ ßØ , æ Ł æ Æ º ß ŁŒ - æ ß Ł ( æ æ Ł, -

Ł Łæ æŁŁ Ł æ Ł Æßł ) æ ºŁ Ł æŒŁ Ł Ł ºª Æ Ł æŒŁ Ł

Ł Ł ¨. . ´Ł ª Ł . ´ غ (A. Weil). ø æ æ æ Ł æº -

ø . ¨æı ÆŁ Ł æ Ł æ Œ Ł Ł :

υD0 + β = n;

æ υ,D ŁæŁ Æ ª Œ ß Ł Ł ª º Ø Æº æ Ł ª υ Ł D- Œ ß Ł ºß; Ł Łæº υ - æ ß , D ª Æß º ß ºŁ ß º Ł º ß æº Ł . ˇ æ F Æ Łæº ł ŁØ ª Ł . ª º Ł Ł :

υD + β = n

Ł Ł º D ∈ (D), Ł (n,D) Æ Łæº ª ł ŁØ, Ø ßı

Ł Œ ŒŁı-ºŁÆ Łæ Ł æŒŁı æ Æ ŁØ. ª ªŁ Ł æŒŁ Łæº Ł ßı ł ŁØ Ł Łæß æ Ł :

.

˛ Œ æ Ł F S = V Ł Ł :

V = X ( X 1 − A(n,D0)).

D0∈(D) υD0+β=n

ˇ Ł Ł æ ˚ łŁ Ł Ł Œ æ :

V 2 6 D0V 0,

ª D0 - ºŁ Ł º (D),

V 0 = X ( X 1 − A(n,D0))2

D0∈(D) υD0+β=n

æ Łæ æŁ Łæº ł ŁØ Ł υD0 + β = n

¯æºŁ

æ æ

Ł

æ

Ł

Ł

æº

ŁŁ

æ ı D ∈ (D),

Æ æ

ß æ

º Ł

º

ß

æº Ł ,

º

ß

D0. ´

ºŁ Ł

Łæ æŁŁ º Œ æ Ł. ˇ

ß Σ1,Σ2 Ł Σ3 Œ ßı æº ı æ ß ŁæºŁ æŁ Ł æŒŁ. ˆº -

æ æ º ß Łæº Ł Σ1 - æ Ø æ ß ˜Łæ æŁ ª . æŁ Ł æŒŁØ æ æ ß Σ1 æ ø æ º æ Ł øŁ ´Ł ª æ º Œ ßı Œ ŁØ Œ ºŁ æ Łı Æ ßı æ Ø, øŁı ßØ æ ª , Œ æ Łæ º Ł ØłŁı Œ Łª Ł æŒŁı æ , º ßı æ æ Ł ºª Æ Ł æŒ Ø ª ŁŁ. æŁ ŁŒ º æ Σ2 Ł Σ3 ı Ł æ º ª æ Ł Ł . ¯æºŁ, º , Łæ æŁ Œ ßæ æºŁłŒ Æ º ł Ø, º æ æŁ ŁŒ º Łæº ł ŁØ Ł

υD0 +β = n. ˛Æœ Ł Ł Łæº ł ŁØ æ ı

ŁØ Ł υD0 +β = n Ł Ł Œ

æŁ Ł æŒ Ø º º Łæº ł ŁØ

Ł α + β = n.

— ææ ßØ Ł Ł Ł º ł Ł

º Łæº , ºŁ º .

ŁØ Ł α β = l, ª l -

ˇ Ł øŁ Łæ æŁ ª Æߺ ł

Œº ææŁ æŒŁı ÆŁ ßı Ł-

Ł ßı ƺ , Œ ß æ Ł Łæ æŁ ª

ªºŁ Æß ł ß º -

Œ æ Łæ Ł æŒŁı ŁºŁ ªŁ Ł æŒŁı æ Æ

ŁØ. ˚ Łæº ƺ , ł… -

ßı æ ø ª , æ æ : Ł Ł

ºŁ º Ø Ł ł , ƺ Ł-¸Ł º .

ƺ ºŁ º Ø, ƺ

˛Æº æ Ł Ł Łæ æŁ ª

Æ º ł ª ł . ´. ¸Ł ŁŒ .

æ Œ æ æ ƺ æ Ł Ł

3 ˛æ ß ß ß.

˜º ł Ł Ł Ł ßı ƺ Ł æ ºŁ Ł æŒŁ ,

ºª Æ Ł

æŒŁ , º -

ß Ł æ ł ß ß. ˙ Ł º æ Ł Ł ßı

æ Œ Œº ææ :

) ß Ł Ł ß Æº ß Ł

n = α + β + γ

ƺ

Æß

Ł º Œ æ ª æ ß Ł ı ł æ º ß

Ł Ł

æŒŁı

-

ª ææŁ ı æº º æ ºßı Łæ º, γ Ł º Ł æº

º

æ Ł,

Æß Ł Œ Ø, æ ı łŁ Ł Œ ßı, æ æ

Ł æŒŁı æ .

Æ) `Ł ß Ł Ł ß Æº ß Ł

n = α + β

æ Ł æº Ł Ł º α Ł β Ł Œ ).

øŁı Ø,

Łª

-

Ł æ º ß æ æ ł Ł ßı Ł Ł ßı

ƺ º

æ

-

Æ º łŁı n º æ ÆøŁØ ºŁ Ł æŒŁØ Ł - ¸Ł º

- ´Ł

ª

Łª Ł æŒŁı æ ( Œ 1.2.1 æŒŁı æ ).

Œ Łª

Ł

-

`Ł ß Ł Ł ß Æº ß Æß ª Æß ł

ß Ł Ł Ł.

˜º ł Ł ŒŁı Ł Ł ßı ƺ Ł æ ºŁ ß Ł ß º -

ª ł ( Œ 2.2 ß ł . ¨ææº Ł æ Œ ß æ ). ˛æ -

Æ æŁº ß º ß º æ Ł øŁ Æ º ł ª ł Ł Łæ æŁ ª

. ´. ¸Ł ŁŒ .