взаимно однозначно.
Пусть
– произвольное нумерованное множество. Определим на отношение эквивалентности так: для любого – вполне перечислимого подмножества имеет место .Полагаем
– факторизация по отношению . Из определения легко видеть, что отделимо. Через обозначим морфизм факторизации . Докажем теперь, что – «наибольший» отделимый фактор – объект , т.е. докажем, что для любого отделимого нумерованного множества и любого морфизма существует (и притом единственный) морфизм такой, что диаграммакоммутативна.
Рассмотрим каноническое представление морфизма
:где
– факторизация, а – мономорфизм. Так как ( – подобъект , а отделимо, то и отделимо. Тогда из определения отношения легко следует, что , но тогда существует отображение такое, что . Так как и – факторизации, то и – морфизмы. Этот (очевидно, единственный) морфизм и удовлетворяет соотношению . Итак, доказано свойство: отображение взаимно однозначно для отделимого . Доопределим теперь функтор . Он уже определен на объектах. Пусть – морфизм. Рассмотрим диаграммуТак как
есть морфизм из в отделимое нумерованное множество , то по доказанному выше свойству существует и притом единственный морфизм , который делает диаграмму коммутативной. Полагаем . Из определения сразу видно, что – функтор, а – естественное преобразование в .В другой терминологии предложение 9 означает, что функтор вложения
имеет левый сопряженный, а именно – функтор ).Список литературы
1. Ершов Ю.Л. «Теория нумераций», Издательство «Наука» Главная редакция физико-математической литературы, Москва, 1997 г., 416 с.