Смекни!
smekni.com

Венера: открытия и проблемы (стр. 2 из 2)

ВОДА НА ВЕНЕРЕ.

По всей видимости, протопланетное вещество, аккумулировавшееся на орбитах Венеры и Земли (в пределах всего 0, 3 а. е.), имело одинаковый состав. Но как же тогда объяснить различия в содержании на Земле и Венере инертных газов- самых надежных указателей хода планетной эволюции, не подверженных изменениям вследствие своей химической неактивности? Весьма привлекательной нам кажется гипотеза гетерогенной аккумуляции планет. Она предполагает, что на завершающей стадии аккумуляции, после сформирования основной массы планет земной группы, на их поверхность выпадали метеориты различных классов, которые по-разному обогащены летучими элементами и, в частности, инертными газами. В этом случае можно объяснить, например, почему оказались различными измеренные изотопные отношения аргона на Земле, Венере и Марсе. На Венере отношение содержания радиогенного изотопа аргон-40, образующегося в результате радиоактивного распада в коре калия-40, к содержанию первичных изотопов аргон-36 и аргон-38 равно единице, в то время как на Земле это отношение в 300, а на Марсе даже в 3000 раз больше. Абсолютные же содержания аргона в атмосферах Земли и Венеры практически одинаковы. О чем это говорит? Возможно, что степень дегазации вещества Венеры была выше, чем на Земле, поскольку аргон-40 выделяется медленнее, чем его первичные изотопы. Это означает, что основная масса летучих элементов перешла в атмосферу Венеры. Первичные изотопы аргона и ряд летучих элементов, захваченных на завершающей стадии аккумуляции, по-видимому, находятся в основном в венерианской атмосфере, в то время как на Марсе они заключены преимущественно в твердых породах. К этому надо добавить, что отношение содержаний первичного аргона и криптона в атмосфере Венеры соответствует их содержанию в углистых хондритах (класса С III), а для Земли - их содержанию в обыкновенных хондритах (класса Н). Хондриты этих классов могли быть основным материалом на завершающей стадии аккумуляции Венеры и Земли. Тогда, допуская идентичность механизма высвобождения первичных изотопов аргона и водорода на Земле и учитывая, что в веществе углистых и обыкновенных хондритов содержится примерно одинаковое количество водорода, можно прийти к предположению о том, что за геологическую эпоху на обеих планетах выделилось примерно одинаковое количество воды. Как известно, практически вся углекислота на Венере сосредоточена в атмосфере. Ее содержание составляет 4х1023 г, чему соответствует давление атмосферы у поверхности около 90 атм. Почти столько же углекислоты содержится на Земле, но она заключена в карбонатах осадочных пород. Соотношение содержаний углекислоты в осадочных породах и атмосфере определяется карбонатно-силикатным взаимодействием а верхнем слое коры планеты и зависит от температуры. При необратимом повышении температуры в атмосферу Земли могли бы перейти "запертая" в осадочных породах углекислота (что создало бы давление около 70 атм) и вода океанов, объем которых эквивалентен давлению пара свыше 400 атм (!). Если на Венере действительно когда-то существовал аналогичный земному резервуар воды, то предстоит отыскать механизм и определить время, в течение которого происходила потеря воды. Ведь в современной атмосфере Венеры общее содержание водяного пара по крайней мере на три порядка меньше, чем на Земле, а воды на поверхности, конечно, нет-слишком высокая температура. Но, может быть, существенно большее количество воды есть в коре Венеры? Известно, что запасы воды в земной коре могут быть сопоставимы с объемом гидросферы (1 370 323 000 км3). По оценке академика В. И. Вернадского, в земном слое глубиной до 16 км содержится 500000000 км3 воды; по другим оценкам, это число следует увеличить приблизительно вдвое. Более высокая, чем на Земле, температура поверхностного слоя коры Венеры не позволяет рассчитывать на аналогичные запасы воды, однако на глубине при температуре выше критической (374 °С) много воды может находиться в состоянии газа. Если представить себе, что в отдаленной перспективе венерианский климат станет мягче, то на поверхности планеты могла бы появиться вода, если к тому же учесть ее вероятно большое содержание в мантии. Другие мыслимые источники запасов воды в коре Венеры несравненно меньше. Как и на Земле, в венерианских породах может содержаться связанная, например кристаллизационная, и в меньшей степени волосная (капиллярная) вода.

ПАЛЕОКЛИМАТ ВЕНЕРЫ.

Расчеты подтверждают высказанное в 60-х годах академиком А. П. Виноградовым предположение о том, что даже небольшое изменение места планеты в Солнечной системе существенно влияет на тепловую эволюцию ее атмосферы и климат. Видимо, Земле очень "повезло", ибо окажись она всего на 10-15 млн. км ближе к Солнцу (на четверть расстояния между орбитами Земли и Венеры), привычные нам благоприятные климатические условия вряд ли бы возникли. В этом убеждает рассмотрение следующей модели. Естественно допустить, что на самых ранних этапах эволюции интегральное сферическое альбедо планеты, лишенной атмосферы, мало отличалось от лунного (0, 07). Равновесная температура при этих условиях должна была находиться вблизи температуры фазового перехода вода - лед. Поскольку в отгоняемых из недр газах содержатся водород и его соединения (прежде всего, аммиак), с образованием атмосферы произошло большое повышение температуры за счет развития парникового эффекта. Это благоприятно сказалось на климате и обеспечило сохранение на поверхности выделявшейся из недр воды, которая сосредотачивалась в океанах. На Венере при тех же начальных условиях ситуация, вероятно, была существенно иной. Ее равновесная температура при современном уровне светимости Солнца оказывается больше 50 °С, а значит, вплоть до давления атмосферы порядка 0, 2 атм температура у поверхности выше температуры кипения воды. Поэтому в первоначально разреженной атмосфере Венеры (с давлением во много раз меньше "критического" 0, 2 атм) вода должна была выкипать, способствуя развитию мощного парникового эффекта и дальнейшему росту температуры на поверхности. Естественно предположить, что потеря воды могла происходить за счет диссоциации молекул водяного пара солнечным ультрафиолетовым излучением. Образующийся водород мог "убегать" в космос, а кислород- взаимодействовать со свежим неокисленным материалом поверхностных пород, подводимым из глубины в результате интенсивной тектонической деятельности. Однако, чтобы согласовать такой ход тепловой эволюции атмосферы Венеры с данными наблюдений, необходимо допустить, что скорость "убегания" водорода была в миллион раз больше существующей. Такое допущение маловероятно, поэтому рассмотренную модель потери воды нужно считать лишь одной из интересных гипотез.

Список литературы

1.«Земля и Вселенная» № 4 за 1980 год 2.RedShift 3.0 3.«Открытая астрономия», Гомулина Наталия, «Физикон» Снимок КА «Магеллан»