Смекни!
smekni.com

Венера: открытия и проблемы (стр. 1 из 2)

.

Одна из моделей Земли.

Как это ни кажется на первый взгляд парадоксальным, но до недавнего времени о планетах Солнечной системы нам было известно меньше, чем о далеких звездах. Такая ситуация сохраняется до сих пор в вопросах происхождения и эволюции планет и звезд. Это объясняется тем, что наблюдениям пока доступны всего девять больших планет Солнечной системы, в то время как число звезд, находящихся на разной стадии эволюции, только в пределах нашей Галактики превышает 10^11. Еще в конце позапрошлого столетия удалось выявить закономерности, связывающие светимость, массу и спектральный класс звезды. Подобные закономерности в планетной физике отсутствуют, и существующие космогонические и эволюционные концепции опираются преимущественно на гипотетические представления. Значительного прогресса в космогонии можно ожидать на пути количественного рассмотрения моделей аккумуляции протопланетных тел из первичного газово-пылевого облака. Среди них серьезного внимания заслуживают, на наш взгляд, появившиеся в последнее время модели, которые строятся исходя из законов классической механики с использованием современных численных методов. Чтобы изучить последующие стадии эволюции, необходимо накопить экспериментальные данные о природе планет в современную и отдаленную эпохи (следы которых в той или иной степени сохранились на поверхности и в атмосферах планет), всесторонне сопоставить, проанализировать эти данные, чем и занимается сравнительная планетология.

Есть, как нам кажется, две причины, объясняющие, почему из всех планет земной группы именно Венера продолжает оставаться в центре внимания исследователей. Во-первых, как ближайший аналог Земли, она может рассматриваться в качестве одной из ее предельных моделей; во-вторых, Венера может служить уникальным полигоном для экспериментов по активному воздействию на климатические процессы в глобальном масштабе. С Венерой непосредственно связана проблема чисто земная, утилитарная - найти пределы регуляции в природно-климатических механизмах и взаимосвязях, за которыми непрерывно расширяющиеся антропогенные воздействия на климат могли бы оказаться необратимыми. Естественно, на первый план выдвигается вопрос о том, что привело к развитию на Венере столь специфических природных условий. Были ли они предопределены закономерным характером первичного фракционирования вещества недр Венеры или последующей эволюцией, обусловленной близостью планеты к Солнцу?

Когда появился на Венере существующий климат, устойчив ли он в течение времени, сопоставимого с возрастом Солнечной системы, или Венера переживала более благоприятные периоды, например в то время, когда на Земле происходили великие оледенения? Наконец, завершились или продолжаются процессы вулканической и тектонической деятельности на планете, сопровождаемые интенсивной дегазацией, и каков баланс продуктов дегазации и диссипации газов из ее атмосферы в различные эпохи?

НЕДРА ВЕНЕРЫ.

Расчеты моделей тепловой эволюции планет показывают, что Венера напоминает Землю не только некоторыми внешними параметрами, но и внутренним строением. У Венеры, по-видимому, есть железное ядро примерно такого же размера, как земное (около 7000 км поперечником), слой с пониженной вязкостью - астеносфера, который, как и у Земли, начинается в среднем с глубины примерно 200 км (или несколько меньше), и кора толщиной в несколько десятков километров. Можно утверждать, что на Венере (как и на Земле) уже на самых ранних этапах произошло разделение (дифференциация) слагающего ее вещества на оболочки.

Поверхностный слой планеты образован преимущественно изверженной базальтоидной породой, которая в отдельных местах может быть более кислой (типа земных гранитов). Об этом же свидетельствуют анализ фотопанорам мест посадки "Венеры-9 и 10", на которых видны выходы магматических пород, и измеренная приборами "Венеры-10" плотность грунта. Она оказалась такой же, как у кристаллических базальтов (2, 7±0, 1) г/см3. Однако нам пока не известен минералогический состав грунта, содержание в нем летучих элементов, чтобы можно было определеннее судить о степени дифференциации планеты и ее эволюционной шкале. Мощный инструмент изучения внутреннего строения Земли-анализ скоростей распространения сейсмических волн от очагов землетрясений и сейсмозондирование. Принципиальная осуществимость таких экспериментов на других планетах не вызывает сомнений, а эффективность этих методов может быть исключительно велика. Данные о размере и строении ядра позволили бы, в частности, ответить на вопрос: почему у Венеры практически отсутствует магнитное поле, действительно ли это объясняется ее крайне медленным вращением? Определение сейсмичности важно, таким образом, не только для исследования недр Венеры, но и для лучшего понимания природы планетарного магнетизма. Как и Земля, где ежегодно происходят сотни крупных вулканических извержений и разрушительных землетрясений, Венера, очевидно, сохранила довольно высокую активность недр. Возможно, что для нее наиболее характерны эффузивные вулканы с близко расположенной к поверхности магмой и ее интенсивным оттоком из периферического очага. На Венере благодаря высокой температуре поверхности потоки лавы должны остывать гораздо медленнее, чем на Земле. Эта лава вместе с кратерами вулканов и вулканическими трещинами (фумаролами) может служить эффективным источником подвода газов в атмосферу. Нельзя также исключить, что в формировании поверхностных структур важную роль играли процессы глобальной тектоники, изменявшие контуры рельефа Венеры за сотни миллионов лет. С этими процессами, вероятно, связана обнаруженная недавно в южном полушарии планеты громадная рифтовая долина. Каменистая осыпь на склоне кратера в районе посадки "Венеры-9" может быть также тектонического происхождения.

УНИКАЛЬНАЯ АТМОСФЕРА.

Согласно современным представлениям, первичные атмосферы планет земной группы не были ими удержаны на стадии аккумуляции. Существующие атмосферы - вторичные, они образовались за счет дегазации недр в процессе разделения вещества на оболочки. Водяной пар и углекислый газ составляют основную часть вулканических газов во время извержений. Количество воды достигает 20% от объема изливающихся базальтов, а объемное содержание углекислого газа по отношению к водяному пару при нормальных условиях примерно 1/5. В состав вулканических газов входят также соединения серы в виде сернистого ангидрида и сероводорода, метан, аммиак. Хорошо известны на Земле "кислые дымы" - хлористый и фтористый водород, выделяющиеся из лав при температуре около 1000°С. На Земле эти соединения хлора и фтора, как и соединения серы, вымываются из атмосферы дождями и растворяются в океанах. На Венере, где океанов нет, они сохранились в атмосфере. Поэтому венерианские облака можно считать своеобразным аналогом земных океанов.

Протяженные, хотя и сильно разреженные облака Венеры занимают в ее атмосфере обширную область на высоте 48-65 км. Вероятно, основную роль в формировании облаков играют соединения серы, из которых образовались капли серной кислоты примерно микронного размера. Наряду с ними в облаках, возможно, встречаются более крупные капли соляной кислоты и частицы серы. В зависимости от высоты относительное содержание отдельных компонентов, видимо, меняется, как изменяются размеры и количество частиц. Сосуществование различных фаз в атмосфере, сохранение удивительной устойчивости и постоянства глобальной структуры облаков, очевидно, обеспечивается атмосферной динамикой, контролирующей также и тепловой режим планеты. В венерианской атмосфере наблюдаются движения различного пространственного масштаба - от зональных и меридиональных течений ее скоростями а десятки и сотни метров в секунду до интенсивной турбулентности в зоне облаков. Феномен четырехсуточной циркуляции на Венере представляет большой интерес с точки зрения геофизической гидродинамики. Эта циркуляция была обнаружена по перемещению контрастных деталей на диске планеты и многократно подтверждена измерениями скорости зонального ветра на спускаемых аппаратах станций "Венера". Контрасты деталей на верхней границе облаков с отражают сложнейшие физико-химические процессы, происходящие внутри облачного слоя. Изучение облаков Венеры представляет особую важность в связи с возрастающей актуальностью чисто земной проблемы - защиты окружающей среды. Промышленные выбросы в атмосферу нашей планеты, приводящие к образованию туманов-смогов, имеют серьезные последствия - превышение предельных санитарных норм загрязнений воздушных бассейнов городов, нарушение экологического равновесия, катастрофическое воздействие на архитектурные памятники и др. Одна из причин возникновения устойчивых смогов-увеличение содержания в атмосфере сернистого ангидрида, его последующее окисление и образование капе< лек серной кислоты. В отличие от обычных туманов, смог не исчезает в солнечный день, а, наоборот, усиливается из-за фотохимических превращений. Венерианские облака в целом подобны таким смогам. Поэтому необходимо лучше понять физико-химические и динамические процессы в облаках, определить точное содержание малых компонентов, которые участвуют в реакциях, химические константы этих реакций и динамические константы разнообразных физических процессов, контролирующих устойчивость, изменения структуры и состава облаков. Все эти задачи стоят в числе первоочередных в дальнейших исследованиях планеты. Мы видели, что в результате интенсивной дегазации недр образуется атмосфера преимущественно углекислого состава, как у Венеры и Марса, а не азотно-кислородного состава, как у Земли. Очевидно, решающее влияние на эволюцию атмосферы Земли оказали процессы фотосинтеза, возникшие в протерозое около 2 млрд. лет назад. Но почему аналогичные изменения не произошли на Венере?