Смекни!
smekni.com

Шпаргалка по Математике 3 (стр. 2 из 8)


Однородные уравнения.

Функция f(x, y) называется однородной относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:

Является ли однородной функция

функция f(x, y) является однородной 3- го порядка.

Любое уравнение вида

является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.

Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:

Т.к. параметр t вообще говоря произвольный, предположим, что

. Получаем:

Правая часть полученного равенства зависит фактически только от одного аргумента

, т.е.

Исходное дифференциальное уравнение таким образом можно записать в виде:

Далее заменяем y = ux,

.

таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения.

Решить уравнение

.

Введем вспомогательную функцию u.

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее

.

Подставляем в исходное уравнение:

Разделяем переменные:

Интегрируя, получаем:

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:


Уравнения в полных дифференциалах.

Дифференциальное уравнение первого порядка вида:

называется уравнением в полных дифференциалах, если левая часть этого уравнения представляет собой полный дифференциал некоторой функции

Интегрирование такого уравнения сводится к нахождению функции u, после чего решение находится в виде:

Если дифференциальная форма

является полным дифференциалом некоторой функции u, то можно записать:
Т.е

Найдем смешанные производные второго порядка, продифференцировав первое уравнение по у, а второе – по х:

Приравнивая левые части уравнений, получаем необходимое и достаточное условие того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также называется условием тотальности.

Теперь рассмотрим вопрос о нахождении собственно функции u.

Проинтегрируем равенство

:

Вследствие интегрирования получаем не постоянную величину С, а некоторую функцию С(у), т.к. при интегрировании переменная у полагается постоянным параметром.

Определим функцию С(у).

Продифференцируем полученное равенство по у.

Откуда получаем:

Для нахождения функции С(у) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием надо доказать, что функция С(у) не зависит от х. Это условие будет выполнено, если производная этой функции по х равна нулю.

Теперь определяем функцию С(у):

Подставляя этот результат в выражение для функции u, получаем:

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:

Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если просто следовать методу, которым формула была получена.

Линейные уравнения.

Дифференциальное уравнение называется линейным относительно неизвестной функции и ее производной, если оно может быть записано в виде:

при этом, если правая часть Q(x) равна нулю, то такое уравнение называется линейным однородным дифференциальным уравнением, если правая часть Q(x) не равна нулю, то такое уравнение называется линейным неоднородным дифференциальным уравнением.

P(x) и Q(x)- функции непрерывные на некотором промежутке a < x < b.

Линейные однородные дифференциальные уравнения.

общее решение линейного однородного дифференциального уравнения первого порядка вида

Рзделение переменных

Общее решение:

Линейные неоднородные дифференциальные уравнения.

Для интегрирования линейных неоднородных уравнений (Q(x)¹0) применяются в основном два метода: метод Бернулли и метод Лагранжа.

Метод Бернулли.

Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций

.

- дифференцирование по частям.

Подставляя в исходное уравнение, получаем:

т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.

Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение

.

можно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение

Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение

с учетом того, что выражение, стоящее в скобках, равно нулю.