Смекни!
smekni.com

Технология восстановления чугунных коленчатых валов двигателей ЗМЗ-53А (стр. 3 из 13)

Остальные напряжения в валике будут равны отношению суммы уси­лий сопротивления усадке со стороны чугуна и оболочки к площади попе­речного сечения валика.

Для случая с закрепленной оболочкой, напряжения в валике можно выразить уравнением:

, (1.3)

где Н - высота валика, мм;

- глубина проплавления чугуна при наплавке без оболочки, мм;

- толщина оболочки, мм;

R – коэффициент, учитывающий разность теплофизических свойств чу­гуна и оболочки;

Таким образом, для уменьшения внутренних напряжений в наплав­ленном слое металла и для предупреждения образования трещин в нем, не­обходимо применять оболочки с низким пределом текучести и высокой пла­стичностью. Такими свойствами обладает малоуглеродистая сталь. При на­плавке по оболочке толщиной 0,8-0,9 мм глубина проплавления чугуна уменьшается с 2,4 мм до 1,0 мм [3]. Соответственно величина остаточных напряжений уменьшается примерно в 2,4 раза.

Мартенситную структуру наплавленного металла можно получить пу­тем: термообработки, охлаждением слоя жидкостью в процессе наплавки либо путем введения в наплавленный металл легирующих элементов, через флюс [14] или проволоку. Сущность последнего способа заключается в сле­дующем. С увеличением содержания углерода в стали, твердость образую­щего мартенсита увеличивается и достигает HRC 60-62 при 0,6-0,8% угле­рода [12]. Углерод одновременно снижает точки начала и конца мартенсит­ных превращений в область отрицательных температур. Поэтому при увели­чении его содержания более 0,8% твердость наплавленного металла снижа­ется за счет увеличения в нем остаточного аустенита. С увеличение содержа­ния легирующих элементов, хрома или марганца, в наплавленном слое кри­вые превращения сдвигаются вправо, что приводит к уменьшению критиче­ской скорости закалки при охлаждении детали на воздухе. Стойкость образо­ванного мартенсита против отпуска увеличивается, поэтому при недостаточ­ном количестве легирующих элементов может произойти отпуск ранее на­плавленных валиков (швов) вследствие значительного нагрева слоя в про­цессе наплавки. Точки начала и конца мартенситных превращений снижа­ются в область отрицательных температур, поэтому чрезмерное увеличение легирующих элементов приводит к увеличению количества остаточного ау­стенита в наплавленном металле и снижению твердости последнего. Стой­кость аустенита в зоне мартенситных превращений повышается, поэтому при охлаждении наплавленного металла для превращения аустенита в мартенсит требуется больше времени. При наплавке это явление способствует увеличе­нию количества остаточного аустенита и снижению твердости наплавленного металла.

В соответствии с выше изложенным для получения наплавленного металла мартенситной структуры с твердостью порядка HRC 60-62 в нем должно содержаться 0,6-0,8% углерода и определенное количество леги­рующих элементов, зависящее от термического цикла наплавленного слоя. В нашем случае целесообразно применять хром. Некоторые другие легирую­щие элементы, например марганец, способствуют образованию трещин в на­плавленном слое.

Опыты по получению металла с мартенситной структурой проводи­лись в следующем порядке [3]. Сначала к флюсу примешивали графит с це­лью полученияв наплавленном металле 0,6-0,8% углерода, затем к тому же флюсу с найденным количеством графита примешивали феррохром для по­лучения мартенситной структуры при охлаждении наплавленного металла на воздухе.

Углерод и легирующие элементы в наплавленный металл можно вво­дить также применением порошковой проволокой, легирующего или кера­мического флюса, легированной проволоки и легированной оболочки.

По результатам опытов в табл. 1.3 представлены данные эксперимен­тальных наплавок коленчатых валов двигателей ЗМЗ-53А.

Как видно из табл. 1.3, наиболее высокая твердость металла со струк­турой мартенсита получается при наплавке под легирующим флюсом, со­держащим 4% графита и 3,5% феррохрома. При этом наплавленный металл содержит 0,8% углерода, 1,8% хрома, 1,79% марганца, 0,65% кремния и в не­значительном количестве другие элементы.

Эксплуатационные испытания на износостойкость проводились сле­дующим образом [3]. Испытывали чугунные коленчатые валы двигателя ЗМЗ-53А, у которых по две шатунных и по две коренных шейки были на­плавлены под легирующим флюсом по оболочке. Часть шеек наплавляли под легирующим флюсом с меньшим количеством феррохрома, в результате они имели твердость HRC 50-60, остальныешейки имели твердость HRC 50-62. Наличие шеек с таким диапазоном твердости позволилоопределить зависимость между твердостью и износостойкостью наплавленного металла относительно высокопрочного чугуна. Чугунные коленчатые валы обрабатывались в соответствие с механическими требованиями завода и устанавливали на капитально отремонтированные двигатели.

Двигатели эксплуатировали в обычных условиях без разборки до появления технических неисправностей, после чего их снимали с автомобилей, разбирали и замеряли диаметры и толщины вкладышей.

В табл. 1.4 приведены данные по относительному износу наплавленных шеек по девяти коленчатым валам со сроком службы, соответствующим пробегу автомобиля 50-70 тыс. км.

Из табл. 1.4 видно, что наплавленные шейки с твердостью более HRC 56 изнашиваются меньше, а с твердостью менее HRC 56 изнашиваются больше не наплавленных чугунных шеек. Поскольку при оптимальном составе легирующего флюса твердость наплавленного металла колеблется в пределах HRC 56-62, износостойкость восстановленных чугунных коленчатых валов получается не ниже новых.

Данные по износостойкости вкладышей с шейками тех же валов, см. табл. 1.4, приведены в табл. 1.5.

Как видно из табл. 1.5, износ вкладышей, сопряженных с наплавленными шейками, меньше, чем с не наплавленными.

Испытанию на статическую прочность подвергали новые коленчатые валы и восстановленные наплавкой. Результаты приведены в табл. 1.6.

Как видно из табл. 1.6, при всех способах наплавки происходит снижение прочности восстановленных чугунных коленчатых валов.

Испытанию на усталостную прочность проводились не машине УП-50 конструкции ЦНИИТМАШ на натуральных образцах. Машина УП-50 предназначена для возбуждения и поддержания, заданных по величине переменных изгибающих напряжений. Результаты испытаний на усталостную прочность приведены в табл. 1.7.

Как видно из табл. 1.7, усталостная прочность при любом способе наплавки снижается. Наименьшее снижение усталостной прочности 10-15% происходит при наплавке под легирующим флюсом по оболочке. Наибольшее снижение усталостной прочности при наплавке в углекислом газе подтвердилось поломкой экспериментального чугунного коленчатого вала в эксплуатации.

1.4. Тенденция развития ремонтной базы в стране.

Зарубежный опыт

С начала 1990 года в стране резко упали объемы автомобильных грузовых перевозок. Отсутствие финансирования государственных предприятий, либерализация цен в экономике, в том числе и не энергоресурсы привели к массовому падению производства. Высокая инфляция ликвидировала оборотные средства автохозяйств, содержание крупных автохозяйств, на несколько сот машин, стало экономически не выгодным.

Зарубежный опыт показывает [11], что в рыночной экономике наиболее эффективными становятся фирмы, которые выбрали узкую специализацию. Это либо автоперевозки, а значит гараж на 5-20 машин, либо авторемонтные работы, предприятие с наличием всего оборудования для ремонтных операций. Количество работающих на этих фирмах не превышает 25-50 человек. Во многих странах на уровне законодательства, через налоги и экономические льготы, поощряется создание именно таких, малых предприятий. Такой фирме легче приспособиться к любым изменениям на рынке. Здоровая конкуренция между этими фирмами подталкивает их к поиску и внедрению новых технологий и предоставлению больших услуг.

В настоящее время в стране большое количество грузовых автомашин находится в частных руках. Ремонт этих машин на крупных авторемонтных мастерских становится не выгодным в связи с большими накладными расходами ремонтного предприятия. Поэтому наличие мелких авторемонтных фирм с невысокими накладными расходами становится необходимостью.

1.5. Задачи дипломного проекта.

В настоящее время в производственных подразделениях МПС РФ существует потребность в надежном и не требующем высокотехнологического оборудования способе восстановления чугунных коленчатых валов ГАЗ – 53А. Для достижения этой цели необходимо решить следующие задачи: