Смекни!
smekni.com

Двойное лучепреломление электромагнитных волн (стр. 3 из 4)

Таким образом, обыкновенные лучи распространяются в кристалле по всем направлениям с одинаковой скоростью

, а необыкновенные- с разной скоростью
(в зависимости от угла между вектором
и оптической осью). Для луча, распространяющегося вдоль оптической оси,
,
, т.е. вдоль оптической оси существует только одна скорость распространения света. Различие в
и
для всех направлений, кроме направления оптической оси, и обуславливает явление двойного лучепреломления в одноосных кристаллах..

Допустим, что в точке

внутри одноосного кристалла находится точечный источник света.

На рис. 8 показано распространение обыкновенного и необыкновенного лучей в кристалле (главная плоскость совпадает с плоскостью чертежа,

-направление оптической оси). Волновой поверхностью обыкновенного луча (от распространяется с
) является сфера, необыкновенного луча (
)-эллипсоид вращения. Наибольшее расхождение волновых поверхностей обыкновенного и необыкновенного лучей наблюдается в направлении, перпендикулярном оптической оси. Эллипсоид и сфера касаются друг друга в точках их пересечения с оптической осью
. Если
(
), то эллипсоид необыкновенного луча вписан в сферу обыкновенного луча (эллипсоид скоростей вытянут относительно оптической оси) и одноосный кристалл называется положительным (рис. 8,а). Если
(
), то эллипсоид описан вокруг сферы (эллипсоид скоростей растянут в направлении, перпендикулярном оптической оси) и одноосный кристалл называется отрицательным (рис. 8,б).

3. Построение Гюйгенса.

Большой заслугой Гюйгенса является создание стройной теории прохождения световой волны через кристалл, объясняющей возникновение двойного лучепреломления. Примененный им метод прост и нагляден, а как способ определения направления обыкновенного и необыкновенного лучей сохранил свое значение и по сей день.

В основе объяснения двойного лучепреломления лежит принцип Гюйгенса, в котором постулируется, что каждая точка, до которой доходит световое возбуждение, может рассматриваться как центр соответствующих вторичных волн. Для определения волнового фронта распространяющейся волны в последующие моменты времени следует построить огибающую этих вторичных волн.

В качестве примера построения обыкновенного и необыкновенного лучей рассмотрим преломление плоской волны на границе анизотропной среды, например положительной (рис. 9). Оптическая ось положительного кристалла лежит в плоскости падения под углом к преломляющей грани кристалла. Параллельный пучок света падает под углом к поверхности кристалла.

рис. 9

За время, в течение которого правый край фронта

достигает точки
на поверхности кристалла, вокруг каждой из точек на поверхности кристалла между
и
возникают две волновые поверхности - сферическая и эллипсоидальная. Эти две поверхности соприкасаются друг с другом вдоль оптической оси. Из-за положительности кристалла эллипсоид будет вписан в сферу. Для нахождения фронтов обыкновенной и необыкновенной волн проводим касательные
и
соответственно к сфере и эллипсоиду. Линии, соединяющие точку
с точками касания сферической и эллипсоидальной поверхностей с касательными
и
, дают соответственно необыкновенный и обыкновенный лучи. Так как главное сечение кристалла в данном случае совпадает с плоскостью рисунка, то электрический вектор
колеблется перпендикулярно этой плоскости, а электрический вектор
необыкновенного луча колеблется в плоскости рисунка.

Из построения можно сделать очевидные заключения:

1. В кристалле происходит двойное лучепреломление. Построения Гюйгенса позволяет определить направления распространения обыкновенного и необыкновенного лучей.

2. Направление необыкновенного луча и направление нормали к соответствующему волновому фронту не совпадают.

4. Пластинки

и

Рассмотрим две когерентные плоско поляризованные волны световые волны, плоскости колебаний которых взаимно перпендикулярны. Пусть колебания в одной волне совершаются вдоль оси

, во второй- вдоль оси
(рис. 10).

рис. 10

Проекции световых векторов этих волн на соответствующие оси изменяются по закону:

(2)

Как известно (из курса механики), два взаимно перпендикулярных гармонических колебания одинаковой частоты при сложении дают в общем случае движение по эллипсу. Аналогично, точка с координатами (2) движется по эллипсу. Следовательно, две когерентные плоско поляризованные волны, плоскости колебаний которых взаимно перпендикулярны, при наложении друг на друга дают волну, в которой вектор

изменяется со временем так, что конец его описывает эллипс. Такой свет называется эллиптически поляризованным. При разности фаз
, кратной
, эллипс вырождается в прямую, и получается плоско поляризованный свет. При разности фаз, равной
, и равенстве амплитуд складываемых волн, эллипс превращается в окружность.

Рассмотрим, что получается при наложении вышедших из кристаллической пластинки обыкновенного и необыкновенного лучей. При нормальном падении света на параллельную оптической оси грань кристалла (рис. 11) обыкновенный и необыкновенный лучи распространяются не разделяясь, но с различной скоростью. В связи с этим между ними возникает разность хода

или разность фаз
:

где

-путь, пройденный лучами в кристалле,
-длина волны в вакууме.