Смекни!
smekni.com

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ (МЕХАНИКА И ТЕРМОДИНАМИКА) (стр. 9 из 12)

Работа с прибором

1. Закрепить (или снять) грузы на крестовине при отключен­ной питании прибора. Проверить правильность намотки нити на вращающийся двухступенчатый диск.

2. Поднять грузы 9 массой m (рис.19), вращая крестовину, на определенную высоту так, чтобы основание грузов совпадало с риской на верхнем фотоэлектрическом датчике.

3. Включить клавишу "Сеть". Отжать клавишу "Пуск". При этом включается блокирующее устройство и грузы фиксируются в первона­чальном состоянии.

4. Включить клавишу "Пуск". При этом отключается электромаг­нит, фиксирующий систему грузов, и запускается миллисекундомер. Когда грузы пересекут луч второго фотокатода, отключается милли­секундомер и включается электромагнит, тормозящий движение грузов. Показания миллисекундомера занести в таблицу.

5. Нажать клавишу "Сброс". При этом очищается от показаний миллисекундомер и освобождается блокирующее устройство, позволяю­щее передвигать грузы в исходное положении.

6. Поднять грузы на определенную высоту в соответствии с п. 2, отжать клавишу "Пуск". Состояние грузов снова будет зафик­сировано.

7. Нажать клавишу "Пуск". Повторить измерения времени движе­ния грузов между верхним и нижним датчиками.

Порядок выполнения работы

Определение момента инерции крестовины.

1) Снять грузы с крестовины маятника. Измерить время движе­ния груза массой m01. Повторить опыт три раза. Найти среднее значение времени падения груза. Повторить эксперимент, изменяя массу подвижных грузов (использовать грузы m01 = 54,5 г; m02 = 54,5 + 40 г, m03 = 54,5 + 40 + 239 г).

2) Определить ускорение, с которым двигался подвижный груз:

Высоту падения грузов измерить по шкале, укрепленной на колонне.

3) Найти угловое ускорение двуступенчатого диска

где r = 4,3 см - радиус большой ступени диска; r = 2,4 см - радиус малой ступени.

4) Вычислить момент сил, действующих на диск для трех значений: m01, т02, т03 по формуле:

M=m0(g-a)r2, (88)

5) Все данные измерений и вычислений занести в таблицу.

6) Построить зависимость М от E по полученным данным. По графику определить момент инерции I0 крестовины без грузов на ней.

Определение моментов инерции грузов

1. Установить четыре груза на расстоянии R от оси враще­ния крестовины (расстояние между насечками на крестовине 1 см). Измерения провести для трех значений R.

2. Определить момент инерции системы Ic; путем измерения времени падения грузов m0 при одном значении m0. Повторить опыт три раза, расчет ic выполнить по формуле:

3. Учитывая, что Ic = I0 + 4I2,0 найти Iгр для данного значения m0.

4. Установить грузы на другом расстоянии R от оси враще­ния. Повторить измерения Iс. Вычислить Iгр для нового значения R.

5. Повторить эксперименты, описанные в пп. 2-4, меняя расстояние R, Вычислить для каждого значения R моменты инерции Iгр.

6. Данные занести в таблицу.

7. Начертить график Iгр= f(R2).

8. Объяснить полученные результаты

Контрольные вопросы и задания

1. Что является мерой инертности тела при поступательном и вращательном движении?

2. Что называется моментом инерции тела относительно оси вращения? Назовите единицу измерения момента инерции.

3. Какие способы определения момента инерции тел вы знаете?

4. Сформулируйте теорему Штейнера.

5. Запишите основной закон вращательного движения.


6. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ТРЕНИЯ С ПОМОЩЬЮ НАКЛОННОГО МАЯТНИКА

Цель работы

Ознакомиться со сложным механическим движением; определить коэффициенты трения различных пар материалов.

Приборы и принадлежности

Наклонный маятник, набор пар трения - шариков и плоских поверхностей качения.

Описание экспериментальной установки

Наклонный маятник (рис.20) собран на платформе I, оснащен­ной регулировочными винтами, позволяющими устанавливать платфор­му в горизонтальном положении. На платформе закреплена поворот­ная штанга 2, положение, которой изменяется ручкой 3, а угол на­клона β контролируется по шкале 4. Со штангой 2 посредством специального держателя жестко связана плоская полированная плас­тинка 5, являющаяся одним телом трущейся пары. В качестве вто­рого тела в установка используются сменные шарики 6, подвешиваемые с помощью тонкой нити к пилону штанги 2. Отклонение шарика 6 от положения равновесия (угол α) измеряется по шкале.

Данный прибор допускает измерение коэффициентов трения скольжения для различных твердых трущихся пар. По известным зна­чениям коэффициентов может быть определена сила трения

Fmp = f*N,

где f - коэффициент трения; N - сила нормального давления. Работа с прибором

1. Установить штангу маятника 2 в положение, соответствую­щее нулевое показанию индикатора угла наклона 4.

2. Проверить правильность установки прибора с помощью шарика, используемого в качестве отвеса. При правильном положении прибора угол отклонения шарика (α) должен быть равен нулю и шарик лишь слегка касается поверхности качения.

3. Откорректировать при необходимости положение прибора ре­гулировочными винтами в платформе прибора.

4. Установить угол наклона штанги прибора β в пределах 50...60°.

Теоретическое введение

На шарик выведенный из положения равновесия, действуют следующие силы: тяжести (тg), натяжения нити (Т), реакции опоры (N) и трения (Fтр) (рис. 21). Под действием скатывающей силы, являющейся геометрической суммой указанных сил (Fck = mg + T + N + Fmp), шарик совершает колебательное движение. Наличие силы трения между шариком и поверхностью качения приводит к уменьшения амплитуды колебаний шарика во времени. Работа сил трения может быть представлена в виде

где Imp - сила трения, Imp =f*N; S - путь, пройденный шариком

, f - коэффициент трения; N - сила реакции опоры; N = mg*sinβ; R - длина нити под­веса; α0 - начальный угол отклонения шарика; αn - конечный угол отклонения шарика; n - число полных колебаний, совершенных шариком при его движении.

Вследствие работы сил трения уменьшается механическая энергия шарика. Убыль механической энергии численно равна работе сил трения:

W0-Wn=Amp, (91)

где W0,Wn - механическая энергия шарика в исходном и конечном состояниях.

В качестве начального и конечного состояний шарика наиболее удобно принимать положения его максимального отклонения, когда скорость движения шарика равна нулю, а механическая энергия численно равна потенциальной энергии шарика. В этом случае

Amp=П0-Пn=mg(h0-hn), (92)

где h0, hn - начальная и конечная высота подъема шарика. Вы­сота подъема шарика может быть выражена через угол наклона штанги β, угол отклонения шарика от положения равновесия в плоскости колебаний α и длину нити подвеса (рис. 21)

h=Rcosβ(1-cosα), (93)

В этом случае выражение (92) принимает вид

Amp=mgRcosβ(cosαn-cosα0)=

=

поскольку для малых углов (α≤5º

0,09 рад) sinα
α
,

то

Тогда

Сопоставляя соотношения (90) и (95), получаем выражение для коэффициента трения

где α0 и αn выражены в радианах. Поскольку шкала для изме­рения углов @@ про градуирована в градусах, то рабочий вид формулы (96) имеет вид:

где углы α0 и αn выражены в угловых градусах.

Порядок выполнения работы

1. Установить угол β наклона штанги прибора на 50...60°.

2. Отклонить шарик от положения равновесия на угол α0<= 5° с помощью вспомогательного предмета (карандаш, ручка).

3. Убрать вспомогательный предмет, представив возможность шарику свободно перемещаться.

4. Зафиксировать угол отклонения шарика от положения равнове­сия @n после 8-10 его полных колебаний.

5. Повторить измерения 3-4 раза и результаты занести в таб­лицу.