Рис. 3. Частотные зависимости входного сопротивления, его составляющих и тока I1 системы двух связанных контуров при слабой связи между ними
Рис. 4. Частотные зависимости входного сопротивления, его составляющих и тока I1 системы двух связанных контуров при сильной связи между ними
Как видно, при слабой связи между контурами вследствие малости ХВН по сравнению с Х1 кривая X1э (w) пересекает ось частот только в одной точке wо. При сильной связи между контурами вследствие значительной величины ХВН, которая на некоторых частотах превышает по абсолютной величине Х1, имея обратный знак, суммарная кривая Х1э (w) пересекает ось частот в трех точках: w01 , w0 и w02. Другими словами, результирующее реактивное сопротивление системы равно нулю не только на частоте w0, но и на частотах w01 и w02, называемых частотами связи. Учитывая еще то обстоятельство, что при сильной связи между контурами сопротивления RВН на частоте w0 и в близлежащей области большие, чем при слабой, понятен двугорбый характер кривых Z1э(w) и I1(w) с максимумами на частотах w 1 и w 2.
Очевидно, имеется граничная связь, превышение которой ведет к двугорбости амплитудно-частотной резонансной характеристики тока первичного контура. Такая связь называется первичной критической связью, а соответствующий ей коэффициент связи — первичным критическим коэффициентом связи (kкр1). Амплитудно-частотную резонансную характеристику вторичного тока строим на основании полученных характеристик первичного тока и (14). Для того чтобы можно было сравнивать амплитудно-частотные резонансные характеристики первичного и вторичного токов, их надо строить на одном рисунке по отношению к резонансным значениям Z2, т.е.
и. . Согласно (14) Таким образом , для построения амплитудно-частотных характеристик вторичного тока достаточно перемножить координаты кривых I1 (w) / I1p и r2 /Z2 (w)Указанные построения для связи, меньше критической, выполнены на рис. 5, а, а для связи, больше критической,— на рис. 2. 19, б. Как видно из рис. 5, б, двугорбость кривой первичного тока выражена резче, причем горбы разнесены дальше, чем у кривой вторичного тока. Очевидно, возможна такая связь между контурами системы, когда двугорбость первичного тока уже наступит, а вторичного — еще нет. Такая связь, превышение которой ведет к появлению двугорбости у резонансной амплитудно-частотной характеристики вторичного тока, называется вторичной критической связью, а соответствующий ей коэффициент связи -вторичным критическим коэффициентом связи (kкр2).
Рис. 5. Амплитудно-частотные характеристики вторичного тока системы двух связанных контуров при слабой (а) и сильной (б) связях между ними
Максимальные значения вторичного тока I2 при связи, больше вторичной критической, наблюдаются на частотах связи w01 и w02, при которых Х1=0. Для того чтобы найти условия возникновения частот связи и определить их значения, (11) и (13) нужно представить в явной относительно частоты форме и исследовать (13) на экстремум, т. е. установить, при каких относительных расстройках (e) вторичный ток будет максимальным и минимальным. Чтобы получить выражения для I1 и I2 в явной относительно частоты форме, перепишем (11), подставив вместо Z1э его значение из (8)
Считая, что контуры настроены в резонанс (w1 = w2= w0), вынесем за скобки в знаменателе w0L и, подставив на основании (2)
получим (15)где
, . (16)Модуль тока
равен (17)Подставив в (7) вместо М. его значение из (2) и домножив числитель и знаменатель (7) на w0 L2 , найдем,
(18)где
. Выражения (13) и (18) — идентичны. Взяв модуль (18) и подставив значение модуля I1 из (17), получим (19)Если частота питающего генератора равна резонансной частоте контуров, т. е. wг = w0 (e = 0), то (19) упрощается
В относительных единицах выражение, описывающее резонансную кривую для тока I 2, имеет вид
(20)
Выражения (17) и (19) соответствуют (12) и (14) и описывают амплитудно-резонансные характеристики токов I1 и I2 в явной относительно частоты (расстройки e) форме.
Исследуем (19) на экстремум, для чего продифференцируем (19) по e и приравняем производную нулю, т. е. dI 2 /de = 0. В результате получим
. Данное уравнение имеет три корня:(21)
При d1 = d2 получаем
(22)
Если первый корень (e1) действителен при любых соотношениях между k и d, то второй и третий корни (e2 и e3) имеют смысл только при k > d. При k<d подкоренное выражение будет мнимым и физического смысла не имеет. В этом случае физический смысл имеет только первый корень (e1), что говорит об одногорбости резонансной характеристики для I2. При k > d физический смысл имеют все три корня, что говорит о двугорбом характере резонансной характеристики для тока I2. Очевидно, вторичный критический коэффициент связи, лежащий на границе перехода от одногорбой кривой к двугорбой, на основании (21) получается тогда, когда корни (21) обращаются в нуль:
При d1 = d2 имеем:k кр2 = d. (23)
Чтобы получить выражения для частот связи при k > kкр2, в (22) надо подставить значение e = а/Q = 1 — w02/w2. Тогда
(24)
Именно на частотах w01 и w02 выполняется условие резонанса, благодаря чему ток /а достигает максимума (рис. 5, б).
Третья резонансная частота получается из условия e1 =0, или e1=1- w02/w2=0; отсюда w = w0. При k > kкр2 на частоте w0 резонансная характеристика тока I2 имеет впадину. При k < kкр2, когда физический смысл имеет только первый корень , системе связанных контуров свойственна лишь одна резонансная частота w0 на которой наблюдается максимум тока I2 (рис.5, а). Наличие одной резонансной частоты при k<kкр и появление частот связи при k>kкр хорошо иллюстрирует рис. 6.
Фазово-частотные резонансные характеристики системы двух связанных контуров представляют собой частотную зависимость фазового сдвига между токами
и приложенной к системе э. д. с. Е. Как следует из (11), сдвиг фазы между током и э. д. с. Е зависит от угла -j1э, значение которого определяется (16). Сдвиг фазы между током и э. д. с. Е зависит от угла [см. (18) ] и отличается от сдвига фазы между током и э.д.с. Е углом . Фазово-частотные характеристики системы двух связанных контуров изображены на рис. 7.