Смекни!
smekni.com

Билеты по физике (стр. 12 из 15)

Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.

Единица сопротивления 0 ом, сопротивлением в 1 ом обладает такой участок цепи, в котором при силе тока 1 ампер напряжение равно 1 вольту. Сопротивление прямо пропорционально длине и обратно пропорционально площади поперечного сечения

, где r – удельное электрическое сопротивление, величина постоянная для данного вещества при данных условиях. При нагревании удельное сопротивление металлов увеличивается по линейному закону
, где r0 – удельное сопротивление при 0 0С, a – температурный коэффициент сопротивления, особый для каждого металла. При близких к абсолютному нулю температурах сопротивление веществ резко падает до нуля. Это явление называется сверхпроводимостью. Прохождение тока в сверхпроводящих материалах происходит без потерь на нагревание проводника.

1) Волновые свойства света. Интерференция света и её применение в технике. Дифракция света. Дифракционная решётка.

Свет — это электромагнитные волны в интер­вале частот 63 • 1014 - 8 • 1014 Гц, воспринимаемых человеческим глазом, т. е. длин волн в интервале 380 - 770 нм.

Свету присущи все свойства электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация. Свет может оказывать дав­ление на вещество, поглощаться средой, вызывать явление фотоэффекта. Имеет конечную скорость рас­пространения в вакууме 300 000 км/с, а в среде ско­рость убывает.

Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и диф­ракции. Интерференцией света называют пространственное перераспределение светового потока при на­ложении двух (или нескольких) когерентных свето­вых волн, в результате чего в одних местах возника­ют максимумы, а в других минимумы интенсивности (интерференционная картина). Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны. Световые волны частично отража­ются от поверхности тонкой пленки, частично прохо­дят в нее. На второй границе пленки вновь происхо­дит частичное отражение волны (рис. 34). Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути. При разности хода I, кратной целому числу длин волн l = 2k λ/2.

При разности хода, кратной нечетному числу полуволн l = (2k + 1) λ/2, наблюдается интерферен­ционный минимум. Когда выполняется условие мак­симума для одной длины световой волны, то оно не выполняется для других волн. Поэтому освещенная белым светом тонкая цветная прозрачная пленка кажется окрашенной. Явление интерференции в тон­ких пленках применяется для контроля качества об­работки поверхностей просветления оптики. При прохождении света через малое круглое отверстие на экране вокруг центрального светлого пятна наблюдаются чередующиеся темные и светлые кольца; если свет проходит через узкую щель, то по­лучается картина из чередующихся светлых и тем­ных полос.

Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света. Диф­ракция объясняется тем, что световые волны, прихо­дящие в результате отклонения из разных точек от­верстия в одну точку на экране, интерферируют между собой. Дифракция света используется в спек­тральных приборах, основным элементом в которых является дифракционная решетка. Дифракционная решетка представляет собой прозрачную пластинку с нанесенной на ней системой параллельных непро­зрачных полос, расположенных на одинаковых рас­стояниях друг от друга.

Пусть на решетку (рис. 35) падает монохрома­тический (определенной длины волны) свет. В ре­зультате дифракции на каждой щели свет распро­страняется не только в первоначальном направлении,

но и по всем другим направлениям. Если за решет­кой поставить собирающую линзу, то на экране в фокальной плоскости все лучи будут собираться в одну полоску.

Параллельные лучи, идущие от краев соседних щелей, имеют разность хода l= dsin φ, где d по­стоянная решетки — расстояние между соответ­ствующими краями соседних щелей, называемое пе­риодом решетки, (φ — угол отклонения световых лу­чей от перпендикуляра к плоскости решетки. При разности хода, равной целому числу длин волн dsin φ = kλ, наблюдается интерференционный мак­симум для данной длины волны. Условие интерфе­ренционного максимума выполняется для каждой длины волны при своем значении дифракционного угла φ. В результате при прохождении через диф­ракционную решетку пучок белого света разлагается в спектр. Угол дифракции имеет наибольшее значе­ние для красного света, так как длина волны красно­го света больше всех остальных в области видимого света. Наименьшее значение угла дифракции для фиолетового света.

Опыт показывает, что интенсивность светового пучка, проходящего через некоторые кристаллы, на­пример, исландского шпата, зависит от взаимной ориентации двух кристаллов. При одинаковой ориен­тации кристаллов свет проходит через второй кри­сталл без ослабления.

2) Вынужденные колебания. Резонанс. Графи зависимости амплитуды от частоты вынужденной силы.

Если колебания происходят под действием периодически действующей внешней си­лы, то такие колебания называют вынужденными. Например, родители раскачивают ребенка на каче­лях, поршень движется в цилиндре двигателя авто­мобиля, колеблются нож электробритвы и игла швейной машины. Характер вынужденных колеба­ний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела. Например, фундамент мотора, на котором он закреп­лен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.

При совпадении частоты внешней силы и час­тоты собственных колебаний тела амплитуда вынуж­денных колебаний резко возрастает. Такое явление называют механическим резонансом. Графически за­висимость вынужденных колебаний от частоты дей­ствия внешней силы показана на рисунке 10.

Явление резонанса может быть причиной раз­рушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически дей­ствующей силы. Поэтому, например, двигатели в ав­томобилях устанавливают на специальных амортиза­торах, а воинским подразделениям при движении по мосту запрещается идти «в ногу».

При отсутствии трения амплитуда вынужден­ных колебаний при резонансе должна возрастать со временем неограниченно. В реальных системах ам­плитуда в установившемся режиме резонанса опре­деляется условием потерь энергии в течение периода и работы внешней силы за то же время. Чем меньше трение, тем больше амплитуда при резонансе.

Билет №22

1) Фотоэлектрический эффект и его законы. Уравнение Эйнштейна для фотоэффекта. Кванты света (фотоны). Применение фотоэфекта в технике.

Явление вырывания электронов из твердых и жидких тел под воздействием света называется внешним фотоэлектрическим эффектом, а вырванные таким образом электроны – фотоэлектронами. Опытным путем установлены законы фотоэффекта – максимальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности, для каждого вещества существует своя красная граница фотоэффекта, т.е. такая частота

nmin, при которой еще возможен фотоэффект, число фотоэлектронов, вырванных за секунду, прямо пропорционально интенсивности света. Также установлена безынерционность фотоэффекта – он возникает мгновенно после начала освещения при условии превышения красной границы. Объяснение фотоэффекта возможно с помощью квантовой теории, утверждающей дискретность энергии. Электромагнитная волна, по этой теории, состоит из отдельных порций – квантов(фотонов). При поглощении кванта энергии фотоэлектрон приобретает кинетическую энергию, которую можно найти из уравнения Эйнштейна для фотоэффекта
, где А0 – работа выхода, параметр вещества. Количество фотоэлектронов, покидающих поверхность металла пропорциональна количеству электронов, которое, в свою очередь, зависит от освещенности (интенсивности света). Фотоэффект используется в оразличных приборах для преобразования энергии светав энергию электрического тока или для управления электрическим током. Простейшим прибором, работающим на основе фотоэввекта является вакуумный фотоэлемент. Фотоэлементы используются для воспроизведения звукового сопровождения, записанного на киноленту в виде звуковой дорожки.

2) Электроёмкость. Конденсатор и его устройство. Энергия заряженного конденсатора (без вывода). Применение конденсаторов в технике.