Ip2 = I2*Sinφ2 = 5.2 * 0,9705 = 5.05A;
Ia3 = I3*Cosj3 = 4.96*0.9249 = 4.59 A.
Ip3 = I3*Sinj3 = 4.96*(- 0.38) = - 1.88 A.
Активная и реактивная составляющие тока в неразветвлённой части цепи:
Ia = Ia2 + Ia3 = 1.25+4.59 = 5.84 A.
Ip = Ip1 + Ip2 + Ip3 = - 4.62+5.05 – 1.88 = - 1.45 A.
Полный ток в неразветвлённой части цепи:
I =
= = 6.02 A.Угол сдвига фаз на входе цепи:
Sinφ = IP / I = - 1.45/6.02 = - 0.2409; φ = -13.940; Cosφ = 0.9706.
Активные, реактивные и полные мощности ветвей:
QC1 = I12 *XC1= 4.622 *65 = 1387 вар.
S1 = U*I1 = 300*4.62 = 1387 B*A.
P2 = I22 * R2 = 5.22* 14 = 379Вт.
QL2 = I22 * XL2 = 5.22 * 56 =1514 вар.
S2 = U * I2 = 300 * 5.2 =1560 В*А.
P3 = I32*R3 = 4.962*56 = 1378 Bт
QC3 = I32 * XC3 = 4.962 * 23 =566 вар.
S2 = U * I2 = 300 *4.96 = 1488 В*А
Активные, реактивные и полные мощности всей цепи:
P = P2 + P3 = 379 + 1378 =1757 Вт.
Q = - QC1 + QL2 - QC3 = - 1387 +1514 -566 = - 439 вар.
S =
= = 1811 В*А, илиS = U * I = 300*6.02 = 1806 В*А.
P = S*Cosφ = 1806 * 0,9706 = 1753 Вт.
Q = S * Sinφ = 1806*(- 0.2404) = - 434вар.
Для построения векторной диаграммы задаёмся масштабами напряжений MU = 25 В/см и токов MI = 0.5 А/см. Векторную диаграмму начинаем строить с вектора напряжения, который откладываем вдоль горизонтальной положительной оси. Векторная диаграмма токов строится с учётом того, что активные токи Ia2 и Ia3 совпадают по фазе с напряжением, поэтому их векторы параллельны вектору напряжения; реактивный индуктивный ток Ip2 отстает по фазе от напряжения, и его вектор строим под углом 900 к вектору напряжения в сторону отставания; реактивные емкостные токи Ip1 и Ip3 опережают по фазе напряжение, и их векторы строим под углом 90° к вектору напряжения в сторону опережения. Вектор тока в неразветвлённой части цепи строим с начала построения в конец вектора емкостного тока Ip3. Векторная диаграмма построена на рисунке 4.
Ia2
MI= 0,5 А/смМU= 25 В/см
I2
I1=Ip1 Ip2
OIa U
Ia3 I3 Ip3 IpI
Рисунок 4
3 Расчёт сложных цепей переменного тока символическим методом
Электрическая схема цепи и комплексная схема замещения представлены на рисунке 5а и б соответственно.
Рисунок 5
Намечаем в независимых контурах заданной цепи, как показано на рисунке 5б, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:
IK1*(Z1 + Z2) – IK2*Z2 = E2- IK1*Z2+IK2*(Z2+Z3)= E3 - E2
Подставляем данные в систему:
IK1*(- j65+14+j56) – IK2*(14+j56) = 230
-IK1*(14+j56) +IK2 *(14+j56+56 – j23) = j240-230
IK1*(14-j9) – IK2*(14+j56) = 230
-IK1*(14+j56) + IK2*(70+j33) = -230+ j240
Решаем систему с помощью определителей. Определитель системы:
Частные определители :
= = 16100+j7590–16660-j9520= -560–j1930. =-1060+j5430+3220+j12880 = 2160+j18310Определяем контурные токи:
IK1 =
= = 0.0476-j0.438 A.IK2 =
= = - 1.09+ j3.89 A.Действительные токи в ветвях цепи определяем как результат наложения контурных токов:
I1 = IK1 = 0.0476 – j0.438 = 0.441
AI2 = IK1-IK2 = 0.0476.- j0.438+1.09- j3.89 = 1.14 – j4.33 = 4.48
AI3 = IK2 = -1.09 + j3.89 = 4.04
A.Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:
SE2 = E2*
=230(1.14+j4.33) = 262+j996=1030 B*ASE23= E3*
= j240*(-1.09 – j3.89) = 912 – j262 = 949 B*AОпределяем комплексные мощности приёмников электрической энергии:
S1 = I12*Z1 =0.4412*( – j65) = – j12.6 =12.6
B*AS2 = I22*Z2 = 4.482*(14+j56) = 281+j1124=1159
B*AS3 = I32*Z3 = 4.042*(56 – j23) = 914– j375 =988
B*A.Уравнение баланса комплексных мощностей!
SЕ1 + SE2=S1 + S2+S3;
262+j996+912-j262 = – j12.6+281+j1124+914– j375
1174+ j734 @ 1182+ j749; 1385
@ 1400Относительная и угловая погрешности незначительны.
Для построения векторной диаграммы задаёмся масштабами токов MI = 0.25 А/см и ЭДС ME = 50 В/см. Векторная диаграмма в комплексной плоскости построена на рисунке 6.
4 Расчёт трёхфазной цепи при соединении приемника в звезду
Схема заданной цепи изображена на рисунке 7.
Определяем систему фазных напряжений генератора. Фазное напряжение:
UФ = Uл/
= 380/1,73=220 В.Комплексные фазные напряжения генератора:
UA = UФ = 220 B
UB = UAe-j120 = 220e-j120 = –110 – j191 B
UC = UAej120 = 220ej120 = –110 + j191 B
Определяем полные проводимости фаз приёмника:
YA =
= j0,01538 См.YB =
= 0.0042-j0.0168 См.YC =
= 0.0153+j0.00628Cм.YN=
= = j0.03125 См.Рисунок 7
Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:
UN=
= (j3.38-3.67+j1.05-2.88+j2.23)/(0.05075+j0.00486) = (-6.55+j6.66)/(0.0195+j0.03611)= 67+j218 = 228
B.Определяем фазные напряжения на нагрузке:
UA/ = UA – UN = 220- (67+j218) = 153-j218 = 266
B.UB/ = UB – UN = (–110-j191) - (67+j218) = -177-j409 =446
B.UC/ = UC–UN=(–110+j191) - (67+j218) = -177 – j27 = 179
B.Определяем токи в фазах нагрузки:
IA = UA/*YA = (153-j218)*(j0.01538) = 3.35+j2.35 = 4.1
A.