Смекни!
smekni.com

Расчет линейных электрических цепей переменного тока (стр. 2 из 3)

Ip2 = I2*Sinφ2 = 5.2 * 0,9705 = 5.05A;

Ia3 = I3*Cosj3 = 4.96*0.9249 = 4.59 A.

Ip3 = I3*Sinj3 = 4.96*(- 0.38) = - 1.88 A.

Активная и реактивная составляющие тока в неразветвлённой части цепи:

Ia = Ia2 + Ia3 = 1.25+4.59 = 5.84 A.

Ip = Ip1 + Ip2 + Ip3 = - 4.62+5.05 – 1.88 = - 1.45 A.

Полный ток в неразветвлённой части цепи:

I =

=
= 6.02 A.

Угол сдвига фаз на входе цепи:

Sinφ = IP / I = - 1.45/6.02 = - 0.2409; φ = -13.940; Cosφ = 0.9706.

Активные, реактивные и полные мощности ветвей:


QC1 = I12 *XC1= 4.622 *65 = 1387 вар.

S1 = U*I1 = 300*4.62 = 1387 B*A.

P2 = I22 * R2 = 5.22* 14 = 379Вт.

QL2 = I22 * XL2 = 5.22 * 56 =1514 вар.

S2 = U * I2 = 300 * 5.2 =1560 В*А.

P3 = I32*R3 = 4.962*56 = 1378 Bт

QC3 = I32 * XC3 = 4.962 * 23 =566 вар.

S2 = U * I2 = 300 *4.96 = 1488 В*А

Активные, реактивные и полные мощности всей цепи:

P = P2 + P3 = 379 + 1378 =1757 Вт.

Q = - QC1 + QL2 - QC3 = - 1387 +1514 -566 = - 439 вар.

S =

=
= 1811 В*А, или

S = U * I = 300*6.02 = 1806 В*А.

P = S*Cosφ = 1806 * 0,9706 = 1753 Вт.

Q = S * Sinφ = 1806*(- 0.2404) = - 434вар.

Для построения векторной диаграммы задаёмся масштабами напряжений MU = 25 В/см и токов MI = 0.5 А/см. Векторную диаграмму начинаем строить с вектора напряжения, который откладываем вдоль горизонтальной положительной оси. Векторная диаграмма токов строится с учётом того, что активные токи Ia2 и Ia3 совпадают по фазе с напряжением, поэтому их векторы параллельны вектору напряжения; реактивный индуктивный ток Ip2 отстает по фазе от напряжения, и его вектор строим под углом 900 к вектору напряжения в сторону отставания; реактивные емкостные токи Ip1 и Ip3 опережают по фазе напряжение, и их векторы строим под углом 90° к вектору напряжения в сторону опережения. Вектор тока в неразветвлённой части цепи строим с начала построения в конец вектора емкостного тока Ip3. Векторная диаграмма построена на рисунке 4.

Ia2

MI= 0,5 А/см

МU= 25 В/см

I2

I1=Ip1 Ip2

OIa U

Ia3

I3 Ip3 Ip

I

Рисунок 4

3 Расчёт сложных цепей переменного тока символическим методом

Электрическая схема цепи и комплексная схема замещения представлены на рисунке 5а и б соответственно.


Рисунок 5

Намечаем в независимых контурах заданной цепи, как показано на рисунке 5б, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:

IK1*(Z1 + Z2) – IK2*Z2 = E2

- IK1*Z2+IK2*(Z2+Z3)= E3 - E2

Подставляем данные в систему:

IK1*(- j65+14+j56) – IK2*(14+j56) = 230

-IK1*(14+j56) +IK2 *(14+j56+56 – j23) = j240-230

IK1*(14-j9) – IK2*(14+j56) = 230

-IK1*(14+j56) + IK2*(70+j33) = -230+ j240

Решаем систему с помощью определителей. Определитель системы:


=1277-j168+2940– j1568=4217-j1736

Частные определители :

=
= 16100+j7590–16660-j9520= -560–j1930.

=-1060+j5430+3220+j12880 = 2160+j18310

Определяем контурные токи:

IK1 =

=
= 0.0476-j0.438 A.

IK2 =

=
= - 1.09+ j3.89 A.

Действительные токи в ветвях цепи определяем как результат наложения контурных токов:

I1 = IK1 = 0.0476 – j0.438 = 0.441

A

I2 = IK1-IK2 = 0.0476.- j0.438+1.09- j3.89 = 1.14 – j4.33 = 4.48

A

I3 = IK2 = -1.09 + j3.89 = 4.04

A.

Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:

SE2 = E2*

=230(1.14+j4.33) = 262+j996=1030
B*A

SE23= E3*

= j240*(-1.09 – j3.89) = 912 – j262 = 949
B*A

Определяем комплексные мощности приёмников электрической энергии:

S1 = I12*Z1 =0.4412*( – j65) = – j12.6 =12.6

B*A

S2 = I22*Z2 = 4.482*(14+j56) = 281+j1124=1159

B*A

S3 = I32*Z3 = 4.042*(56 – j23) = 914– j375 =988

B*A.

Уравнение баланса комплексных мощностей!

SЕ1 + SE2=S1 + S2+S3;

262+j996+912-j262 = – j12.6+281+j1124+914– j375

1174+ j734 @ 1182+ j749; 1385

@ 1400

Относительная и угловая погрешности незначительны.

Для построения векторной диаграммы задаёмся масштабами токов MI = 0.25 А/см и ЭДС ME = 50 В/см. Векторная диаграмма в комплексной плоскости построена на рисунке 6.

4 Расчёт трёхфазной цепи при соединении приемника в звезду

Схема заданной цепи изображена на рисунке 7.

Определяем систе­му фазных напряжений генератора. Фазное напряжение:


UФ = Uл/

= 380/1,73=220 В.

Комплексные фазные напряжения генератора:

UA = UФ = 220 B

UB = UAe-j120 = 220e-j120 = –110 – j191 B

UC = UAej120 = 220ej120 = –110 + j191 B

Определяем полные проводимости фаз приёмника:

YA =

= j0,01538 См.

YB =

= 0.0042-j0.0168 См.

YC =

= 0.0153+j0.00628Cм.

YN=

=
= j0.03125 См.

Рисунок 7


Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:

UN=

= (j3.38-3.67+j1.05-2.88+j2.23)/(0.05075+j0.00486) = (-6.55+j6.66)/(0.0195+j0.03611)= 67+j218 = 228

B.

Определяем фазные напряжения на нагрузке:

UA/ = UAUN = 220- (67+j218) = 153-j218 = 266

B.

UB/ = UBUN = (–110-j191) - (67+j218) = -177-j409 =446

B.

UC/ = UCUN=(–110+j191) - (67+j218) = -177 – j27 = 179

B.

Определяем токи в фазах нагрузки:

IA = UA/*YA = (153-j218)*(j0.01538) = 3.35+j2.35 = 4.1

A.