Смекни!
smekni.com

Расчет линейных электрических цепей переменного тока (стр. 1 из 3)

Министерство образования Республики Беларусь

Учреждение образования

«Гродненский государственный университет имени Янки Купалы»

Технологический колледж

Специальность: 2-360331 «Монтаж и эксплуатация

электрооборудования»

Группа МиЭЭ-17з

КУРСОВАЯ РАБОТА

по дисциплине

«Теоретические основы электротехники»

Расчет линейных электрических цепей

переменного тока

Вариант №44

Разработал: Куликов А.Г.

Руководитель: Дубок Н.Д.


Задание на курсовую работу

Заданы три приёмника электрической энергии со следующими параметрами: Z 1 = -j65 Ом, Z 2 = 14+j56 Ом, Z 3 =56- j23 Ом. Рассчитать режимы работы электроприёмников при следующих схемах включения:

1.Присоединить приёмники последовательно к источнику с напряжением U = 300 В. Определить полное сопротивление цепи Z, ток I, напряжения на участках, угол сдвига фаз, мощности участков и всей цепи, индуктивности и ёмкости участков. Построить топографическую векторную диаграмму цепи.

2. Присоединить приёмники параллельно к источнику с напряжением

U = 300 В. Определить токи в ветвях и в неразветвленной части цепи, углы сдвига фаз в ветвях и во всей цепи, мощности ветвей и всей цепи. Построить векторную диаграмму цепи.

3. Составить из приёмников цепь с двумя узлами, включив в каждую

ветвь соответственно электродвижущую силу E2=230 В и Е3 = j240 B. Рассчитать в комплексной форме токи в ветвях, напряжения на участках, мощности источников и приёмников, составить уравнение баланса мощностей. Построить векторную диаграмму в комплексной плоскости. Для расчёта применить метод контурных токов.

4. Соединить приёмники в звезду с нулевым проводом (ZN = -j32 Ом), и подключить их к трёхфазному источнику с линейным напряжением UЛ =380 В. Определить фазные токи и напряжения источника, напряжение смещения нейтрали и ток в нулевом проводе. Построить топографическую векторную диаграмму в комплексной плоскости.

5. Соединить приёмники в треугольник и подключить его к тому же источнику трехфазного напряжения. Определить фазные и линейные напряжения и токи, мощности фаз и всей цепи. Построить векторную диаграмму цепи в комплексной плоскости.

6. Присоединить приёмники последовательно к источнику несинусоидального тока i=7Sin(wt+130)+1,2Sin(2wt-860)+0,4Sin3wtA. Определить действующие значения тока и напряжения, активную мощность цепи. Записать уравнения мгновенных значений напряжения в цепи. Значения сопротивлений считать для частоты первой гармоники.

Частоту напряжения считать равной f = 50 Гц.


1 Расчёт неразветвлённой цепи с помощью векторных диаграмм

В задании на курсовую работу сопротивления даны в комплексной форме. Так как расчёт цепи нужно выполнить с помощью векторных диаграмм, определяем соответствующие заданным комплексам активные и реактивные сопротивления: XС1= 65 Ом, R2 = 14 Ом, XL2=56 Ом, R3=56 Ом ,ХC3= 23 Ом.

Из заданных приёмников составляем неразветвлённую цепь (рис. 1).

Рисунок 1

Определяем активные и реактивные сопротивления всей цепи:

R = R2+ R3= 14 + 56 = 70 Ом;

X = -XC1+ XL2 – XC3 = - 65 + 56 - 23 = - 32 Ом.

Полное сопротивление всей цепи тогда определяем из выражения:

Z =

=
= 77 Ом.

Ток в цепи будет общим для всех приёмников и определится по закону Ома:


I = U / Z = 300/77 = 3.9 A.

Угол сдвига фаз между напряжением и током определяется по синусу

Sin j = X / Z или тангенсу Tg j = X / R,

так как эти функции являются нечётными и определяют знак угла “плюс” или “минус”. Положительный знак угла указывает на активно-индуктивный (или чисто индуктивный) характер нагрузки, а отрицательный знак угла указывает на активно-ёмкостный (или чисто ёмкостный) характер. Таким образом, угол сдвига фаз между напряжением и током определим по синусу

Sin j= X/Z = - 32/77 = - 0,4156;j = - 24.56°; Cos j = 0,9096.

Напряжения на участках цепи определяем также из формулы закона Ома:

UC1= I * XC1 = 3.9 *65 =253.5 B.

UR2 = I * R2 = 3.9 * 14 = 54.6 B.

UL2 = I * XL2 = 3.9 * 56 = 19.5 B

UR3 = I * R3 = 3.9 * 56 = 19.5 B

UC3 = I * XC3 = 3.9 * 23 = 89.7 B.

Определяем активные и реактивные мощности участков цепи:

QC1= I2 * XC1 =3.92 *65 = 989 вар.

P2 = I2 * R2 =3.92 * 14 = 213 Bт.

QL2 = I2 * XL2 = 3.92*56 = 852 вар.

P3=I2*R3 = 3.92*56= 852 Вт

QС3 = I2 * XС3 = 3.92 *23 =350 вар.


Активная, реактивная и полная мощности всей цепи соответственно будут равны:

P = P2+ P3= 213 +852 =1065 Вт.

Q = -QC1+ QL2 - QС3= -989+852- 350 = - 487 вар.

S =

=
=1171 B*A.

Полную, активную и реактивную мощности всей цепи можно определить также по другим формулам:

S = U * I =300 *3.9 =1170 В*А.

Р = S * Cosj =1170* 0,9096 =1064 Вт,

Q = S * Sin j=1170*( - 0,4154) = - 486 вар.

Определяем ёмкость и индуктивность участков. Угловая частота ω = 2 πf = 2 * 3,14 * 50 = 314 с-1

C1 = 1/wXc1=1/(314*65)= 0,000049 Ф = 49 мкФ

L2 = XL2/w = 56/314 = 0,178 Гн

С3 = 1/wXС3 = 1/(314*23) = 0,000138 Ф = 138 мкФ.

Для построения векторной диаграммы задаёмся масштабами тока и напряжения, которые будут соответственно равны MI = 0,25 A/см и MU = 25 B/см.

Построение топографической векторной диаграммы начинаем с вектора тока, который откладываем вдоль положительной горизонтальной оси координат. Векторы напряжений на участках строятся в порядке обтекания их током с учётом того, что векторы напряжений на активных элементах

R2 и
R3 совпадают по фазе с током и проводятся параллельно вектору тока. Вектор напряжения на индуктивности
L2 опережает ток по фазе на угол 900 и поэтому откладывается на чертеже вверх по отношению к току. Векторы напряжений на ёмкости
С1 и
отстают от тока по фазе на угол 900 и откладываются на чертеже вниз по отношению к току. Вектор напряжения между зажимами цепи проводится с начала вектора тока в конец вектора
С3. На векторной диаграмме отмечаем треугольник напряжений ОАВ, из которого активная составляющая напряжения

Uа = UR2 + UR3

и реактивная составляющая напряжения

Uр = -UС1 + UL2 – UС3.

Топографическая векторная диаграмма построена на рисунке 2.


Ua

O

φ

MI= 0,5 А/см

МU= 25 В/см

UC1 U UP

UR3

UR2 UL2


UC3

Рисунок 2

2 Расчёт разветвлённой цепи с помощью векторных диаграмм

Присоединяем заданные приёмники параллельно к источнику напряжения. Это значит, что цепь состоит из трех ветвей, для которых напряжение источника является общим. Схема цепи показана на рисунке 3.

Расчёт параллельной цепи выполняем по активным и реактивным составляющим токов.


Рисунок 3

Этот метод предусматривает использование схемы замещения с последовательным соединением элементов. В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей:

Z1 = Хс1 = 65 Ом.

Z2 =

=
= 57.7 Ом.

Z3 =

= 60.5 Ом.

Углы сдвига фаз между напряжениями и токами в ветвях определяются также по синусу (или тангенсу):

Sinφ1 = -1; j1 = - 90°;Cosφ1 = 0

Sinφ2 = XL2 / Z2 = 56 / 57.7 = O.9705; j2 = 76.05°; Cosφ2 = 0.241.

Sinφ3 = - XC3/Z3= - 23/60.5= - 0.38; φ3 = - 22.34°; Cosφ3 = 0.9249.

Затем можно определять токи в ветвях по закону Ома:


I1 = U / Z1 =300 / 65 = 4.62 А.

I2 = U / Z2 = 300 / 57.7 = 5.2 А.

I3 = U / Z3 = 300 / 60.5 = 4.96А.

Для определения тока в неразветвлённой части цепи нужно знать активные и реактивные составляющие токов в ветвях и неразветвленной части цепи:

Ip1 = I1*Sinj1= 4.62*(- 1) = - 4.62 A.

Ia2 = I2*Cosφ2 = 5.2 * 0,241 = 1.25A;