Дано: Q= 4 кН Т=6 кН G=3 кН a=20 см b=40 см c=15 см R=20 см r=10 см T=2ttIIAY
TAZ PIIAY
Решение: К системе приложены сила тяжести G, силы натяжения нитей T, t и P. Реакция подпятника А определяется тремя составляющими: XА, YA,ZA, а реакция подшипника В-двумя: Хв и Yв.
Из этих сил – шесть неизвестных. Для их определения можно составить шесть уравнений равновесия.
ΣX=0 XA+XB-Tcos30°= 0 (1)
ΣY=0 YA+YB+Tsin30°+P+t = 0 (2)
ΣZ=0 ZA-G-Q=0 (3)
ΣMAX=0 –YB(a+b)-Pa-QRcos45°-t(a+b+c)-Tsin30°(a+b+c)=0 (4)
ΣMAY=0 XB(a+b)-QRsin45°-Tcos30°(a+b+c)=0 (5)
ΣMAZ=0 Pr+tR-TR=0 (6)
Из уравнения (6) находим P=(T-t)R/r = (6-3)*20/10= 6 кН
Из уравнения (5) находим XB= (QRsin45°+Tcos30°(a+b+c))/(a+b) = (4*20*0,707+6*0,866(20+40+15))/(20+40) = 7,44 кH
Из уравнения (4) находим YB= -(Pa+QRcos45°+t(a+b+c)+Tsin30°(a+b+c))/(a+b) = -(6*20+4*20*0,707+3*(20+40+15)+6*0,5(20+40+15))/(20+40)= -10,44 кH
Из уравнения (3) находим ZA=G+Q=3+4= 7 кH
Из уравнения (2) находим YA=-YB-Tsin30°-P-t=10,4-6*0,5-6-3= -1,6 кН
Из уравнения (1) находим XA=-XB+Tcos30°= -7,44+6*0,866= -2,24 кН
Знак (-) перед найденными значениями реакций XA,YAи YB означает, что данные силы действуют в направлении, противоположном выбранному на рисунке.
Точка М движется относительно тела D. По заданным уравнениям относительного движения точки М и движения тела D определить для момента времени t=t1абсолютную скорость и абсолютное ускорение точки M.
Схема механизма показана на рисунке 1, исходные данные, приведены в таблице 1:
Уравнение относительного движения точки МОМ=Sr= Sr(t),см. | Уравнение движения телаφe= φe(t), рад | t1,c | α,град |
6(t+0,5t2) | t3-5t | 2 | 30 |
Рисунок 1
Решение
Будем считать, что в заданный момент времени плоскость чертежа совпадает с плоскостью треугольника D. Положение точки М на теле D определяется расстоянием Sr =ОМ.
При t= 2 c
Sr=6(2+0,5*22) = 24 см.
Абсолютную скорость точки М найдём как геометрическую сумму относительной и переносной скоростей:
Модуль относительной скорости
,где
При t= 2 c
Положительный знак у
показывает, что вектор направлен в сторону возрастания Sr. (1)где R – радиус окружности L, описываемый той точкой тела, с которой в данный момент совпадает точка M, R= Srsin 300 =12 см; - модуль угловой скорости тела:
При t= 2 c
Положительный знак у величины
показывает, что вращение треугольника происходит вокруг оси OY в сторону, направления отчёта угла α. Поэтому вектор направлен по оси OY влево Рисунок 2.Модуль переносной скорости, по формуле (1),
Вектор
направлен по касательной к окружности Lв сторону вращения тела. Так как и взаимно перпендикулярны, модуль абсолютной скорости точки M ,или
Абсолютное ускорение точки равно геометрической сумме относительного, переносного и кориолисова ускорений:
или в развёрнутом виде
Рисунок 2 Рисунок 3
Модуль относительного касательного ускорения
где
При t= 2 c
Положительный знак
показывает, что вектор направлен в сторону Sr. Знаки и одинаковы; следовательно, относительное движение точки М ускоренное.Относительное нормальное ускорение
так как траектория относительного движения – прямая (
).Модуль переносного вращательного ускорения
(2)где
- модуль углового ускорения тела D:При t= 2 c
Знаки
и одинаковы; следовательно, вращение треугольника Dускоренное, направления векторов и совпадают Рисунок 2,3.Согласно (2),
Вектор
направлен в ту же сторону, что и .Модуль переносного центростремительного ускорения
Вектор
направлен к центру окружности L.Кориолисово ускорение
Модуль кориолисова ускорения
где
С учётом найденных выше значений, получаем
Вектор
направлен согласно правилу векторного произведения Рисунок 3Модуль абсолютного ускорения точки М находим способом проекций:
Результаты расчёта сведены в таблице 2.
Скорость, см/с | Ускорение, см/с2 | ||||||||||||
7 | 84 | 18 | 85,9 | 12 | 588 | 144 | 0 | 6 | 126 | 270 | -591 | 649 |