Перша одержана рентгенографічно А.Ф. Ськришевськім, а друга — електрографічно Я.І. Стецивом. Для олова (див. мал. 2.14) крива після першого максимуму не досягає осі абсцис, а на кривий для селену перший максимум дискретний. Нерозв'язність піків функції 4πR2ρат(R) відображає наявність в рідині руху трансляції атомів, безперервне переміщення їх з однієї координаційної сфери в іншу і навпаки. Дискретність першого піку функції 4πR2ρат(R) є доказом існування фіксованих положень атомів; поступальні переміщення атомів з одних рівноважних положень в інші не спостерігаються. Таким чином, криві функції 4πR2ρат(R) для атомарної рідини і твердої аморфної речовини принципово відрізняються тим, що в аморфній речовині перший пік цієї функції розділений проміжком, де 4πR2ρат(R) = 0, тоді як в рідині навіть перший пік не визначений з боку великих R. Загальним для рідин і аморфних речовин є розмитість піків радіальної функції атомної густини.Розмитістьїх відбувається унаслідок коливань атомів навколо положень рівноваги і статистичного розкиду центрів коливань.
Положення максимумів на кривій 4πR2ρат(R) визначає найвірогідніші відстані, площа під максимумами дає середнє число сусідніх атомів, ширина максимуму на половині його висоти — середньоквадратичне відхилення атомів від рівноважного положення, крива розподілу в цілому характеризує ближній порядок в рідині і аморфній речовині.
Визначення координаційних чисел. У разі аморфного селену площа першого піку на кривій розподілу при R1 =2,32 Å рівна двом, а другого при R2= 3,7 Å — восьми, що відповідає числу атомів на даних відстанях. Гратка кристалічного селену складаються із зигзагоподібних гвинтових ланцюжків, кожен атом в яких ковалентно пов'язаний з двома найближчими атомами, а ланцюжки між собою — силами Ван-дер-Ваальса. Відстань між найближчими атомами в ланцюжку рівна 2,34 Å, а між атомами сусідніх ланцюжків — приблизно 3,8 Å. Отже, в аморфному селені зберігається ближній порядок такої ж, як в кристалічному. Неізольованість першого і подальших піків на кривій розподілу для рідкого олова утрудняє вимірювання площі під ними. Кількісно можна інтерпретувати тільки перший максимум функції 4πR2ρат(R), обчислити тільки перше координаційне число. При цьому площу під максимумом виділяють двома способами: симетрично, тобто як би дзеркальним відображенням лівої гілки кривої щодо перпендикуляра, опущеного з вершини максимуму на вісь R, інесиметрично — продовженням спадаючої правої гілки кривої до перетину її з віссю абсцис. Перший спосіб заснований на припущенні, що відхилення атомів однакове як у бік збільшення, так і у бік зменшення R щодорівноважного R1. Координаційнечисло знаходиться обчисленням інтеграла
(110)другий спосіб визначення n1 заснований на припущенні, що перший пік функції 4πR2ρат(R) є як би дзеркальним відбиттям кривої залежності потенційної енергії взаємодії атомів від відстані між ними (див. мал. 1.4). У рідинах коливання атомів щодо рівноважних положень ангармонічні. Сили відштовхування з боку центрального атома обмежують зсуви сусідніх атомів від рівноважного положення у бік менших R. Атомы мають набагато більшу свободу руху у бік зростання R щодорівноважної відстані R1. В результаті в середньому на рівних відстанях від R1знаходитьсянеоднакове число атомів: при R1— R' їхменше, ніж при R1+ R' що іобумовлює асиметрію першої координаційної сфери щодо R1.Числоатомів в першій координаційній сфері визначається інтегралом
(R" > R') (111)Таким чином, залежно від способу виділення площі першого максимуму кривої розподілу для координаційного числа n1виходять різні значення. Для рідкого олова по формулі (110) знаходимо n1= 8,6, а по формулі (111) — n1= 9,7. У кристалічній гратці олова n1= 4 + 2 + 4.
Координаційне число, як один із структурних параметрів рідини, пов'язане з взаємодією найближчих сусідів. Значущість цього числа полягає у тому, що воно дозволяє скласти наочне уявлення про характер зміни упаковки при плавленні і подальшому нагріванні розплаву. Проте структура рідини в цілому описується не координаційними числами і радіусами координаційних сфер, а радіальними функціями розподілу. Теоретичні і експериментальні дослідження показують, що координаційне число в рідині є не числом в буквальному розумінні, а своєрідною функцією густини і температури. Координаційні числа мають точні значення лише в кристалі, де функція 4πR2ρат(R) дискретна. У рідині вони піддаються флуктуаціям. По теоретичних розрахунках І. 3. Фішера, в рідких металах флуктуація першого координаційного числа n1складає 10%, а другого n2— 30—40%. Такі високі значення флуктуації координаційних чисел є слідством руху трансляції атомів разом з коливальним. Найвірогідніше число найближчих сусідів в рідині може не співпадати з середнім його значенням. Тому кількісний опис розподілу найближчих сусідів повинен бути відображене не середнім координаційним числом n1, афункцією розподілу W(n1)визначаючої вірогідність виявлення різного числа найближчих сусідів на даній відстані. У простому випадку функція W(n1)може бути представлена дискретним гаусовим розподілом
(112)де n1, n2 ... — можливі значення першого координаційного числа < n1 >— середньоквадратична флуктуація першого координаційного числа.
На мал. 2.15 показаний розподіл координаційних чисел рідкого аргону і води. Видно, що в рідині окрім середнього координаційного числа n1 можливі інші значення. Наприклад, для води однаково вірогідні n1 = 4 і n1 = 5, значна вірогідність для n1 = 3 і n1 = 6. Функція розподілу W(n1)насправді не така симетрична, як гаусова. У рідин, порівняно щільно упакованих, переважають флуктуації координаційного числа у бік його зменшення, а у рідин з малою густиною упаковки атомів — у бік його збільшення.
Визначення середньоквадратичного відхилення атомів.Знайдемо зв'язок між середньоквадратичним відхиленням атомів <ΔR2k> і шириною піку кривої розподілу на половині його висоти. При цьому вважатимемо, що всі піки мають гаусову форму і однакову ширину (мал. 2.16). Тоді
(113)де Rk— радіус k-йкоординаційної сфери, nk— координаційне число, напівширину піку функції 4πR2ρат(R) визначимо як
L1/2 = R2— R1 (114)
де R1іR2— значення R, при яких функція 4πR2ρат(R) рівна половині свого максимального значення, тобто коли
(115)Замінюючи у формулі (113) функцію 4πR2ρат(R) її значенням на половині висоти піку, одержимо рівняння
(116)Вирішуючи його, знайдемо
Отже,
Тоді шукане середньоквадратичне відхилення атомів в одному напрямі<ΔR2k> = 0,18L21/2
Оскільки рідини і аморфні тіла ізотропні, той повний квадратичний зсув <ΔR2 > = 3<ΔR2k>. Припущення про те, що всі піки функції 4πR2ρат(R) мають однакову напівширину, справедливе тільки для кристалів. У разі рідин і аморфних тіл ширина піків цієї функції зростає із збільшенням відстані від фіксованого атома. Згідно Дж. Прінсу, середньоквадратичний зсув атома з рівноважного положення пов'язаний із значенням Rkспіввідношенням
<ΔR2k> = 2DRk(117)
де D — коефіцієнт (що має розмірність довжини), що враховує статистичний розкид в положеннях рівноваги атомів, виникає при плавленні кристала і подальшому підвищенні температури. Його числове значення можна обчислити по формулі, запропонованій В. П. Квітковим,
(118)де Q — енергія, необхідна для руйнування кристалічної гратки; Тпл— температура плавлення; R — молярна газова постійна; Dmax— максимальне значення D при високій температурі розплаву.
Н. І. Гулівец при теоретичному розгляді залежності <ΔR2k> від Rkв простих рідинах відзначає, що значення <ΔR2k> складаються з динамічних зсувів, обумовлених тепловими коливаннями атомів рідини біля рівноважних положень, і статичних зсувів, пов'язаних з розкидом рівноважних положень атомів біля деякого середнього положення. Складові <ΔR2дин> і <ΔR2ст> описуються формулою
(119)де m — маса атома; с — швидкість розповсюдження гіперзвукових хвиль в рідині;
інтегральний синус; u = hν/(kT).Якщо в простих рідинах динамічні і статичні зсуви атомів відбуваються незалежно, то