Смекни!
smekni.com

Рентгеноструктурний аналіз молибдену (стр. 14 из 15)

(141)

яке виходить з рівняння

(142)

За умови, що для значення R= 0 функція ρ(R) = 0 ,asinSR/(SR) =1. Средню атомну густину обчислюють по формулі

або
(143)

де А — атомна маса, ρ —густина речовини, NA— постійна Авогадро, mH— маса атома водню. Середня електронна густина речовини рівна

(144)

де Zj — число електронів атома.

Необхідно відзначити, що на досвіді криву інтенсивності I(S)можна визначити в обмеженому інтервалі S, а не від 0 до ∞, як це потрібне теорією. Пояснюється це двома причинами: 1) при зйомці на проходження розсіяне під невеликими кутами випромінювання перекривається первинним пучком, а при зйомці на відбивання —краями зразка. Через це не можна визначити хід інтенсивності від 0 до деякого значення S1Тому доводиться довільно екстраполювати I(S)до нуля; 2) в результаті кінцівки довжини хвилі крива I(S)може бути визначена до значень

S2 < (4π/λ)sinθ. Якщоλ = 1,54 Å, те граничне значення S2=(4π/λ)=8,1 Å-1 і S2 = 18 Å-1 при λ= 0,71 Å. Експерементально вдається знайти осциляції I(S) до значень S2 = 10 — 12 Å-1 залежно від чутливості методу і довжини хвилі використовуваного випромінювання.

Розглянуті способи нормування експериментальних кривих інтенсивності відносяться до рентгенографії. Нормування кривих розсіювання електронів ускладнюється через відсутність функції некогерентного розсіювання. Ослаблення некогерентного фону за допомогою електронних фільтрів не завжди забезпечує необхідну точність визначення структурних параметрів досліджуваних речовин по їх електронограмам.

І. Д. Набітовіч, Я. І. Стецив і Я В. Волощук запропонували новий метод визначення когерентної інтенсивності і інтенсивності фону по експериментальній кривій розсіювання електронів. Розглянемо суть цього методу. Відомо, що експериментально заміряна інтенсивність розсіювання електронів включає некогерентний фон. Отже,

Iэкс(S) = Iк(S) + Iф(S) (145)

Відповідно до закону збереження інтенсивності когерентна частина нормується за допомогою рівності

(146)

Інтегруючи (145) і враховуючи Ik(S), одержимо

(147)

де

(148)

— інтенсивність, яка виходила б в аналогічних умовах від незалежних атомів. За визначенням,

a(S) — 1 = [Iнор(S) — f2(S)]/f2(S) (149)

Враховуючи, що Iнор(S) = kIk(S)і беручи до уваги рівність (145) і (148), знайдемо


a(S) — 1 = k[Iэкс(S)/f2(S) — <I(S)>/f2(S)] (150)

Рівняння для розрахунку функції 4πR2ρ(R) має вигляд

(151)

У ньому невідомими є нормуючий множник kі доданок <I(S)>/f2(S). Як показують дослідження, значення функції розподілу сильно залежать від нормуючого множника k, тому виникає питання, як його визначити. З (147) витікає, що крива Iэкс(S) повинна осцилювати навколо кривої <I(S)>. Отже, крива Iэкс(S)/f2(S) також повинна осцилювати навколо кривої <I(S)>/f2(S). Хід цієї кривої можна визначити графічно. Для цього за експериментальними даними слід побудувати графік функції Iэкс(S)/f2(S) залежно від S. Потім провести криву <I(S)>/f2(S) так, щоб виконувалася умова

(152)

При цьому верхню межу інтеграції бажано брати як можна велику, використовуючи тим самим всі спостережувані інтерференційні ефекти.

Щоб знайти нормуючий множник, потрібно знати інтенсивність когерентного розсіювання і інтенсивність фону. З рівнянь (149) і (150) знаходимо

Ikнор(S) = f2(S){k[Iэкс(S)/f2(S) — <I(S)>/f2(S)] + 1} (153)

Аналогічно, користуючись рівністю (148), визначимо

Iфнор(S) = kIф(S) = f2(S)[k I(S)>/f2(S) — 1] (154)

Теоретичні розрахунки показують, що значення нормуючого множника залежать від верхньої межі інтеграції в рівнянні (151). Межі можливих значень kможуть бути визначені по експериментальній кривій інтенсивності. Як вже відомо, інтенсивність когерентного розсіювання є величиною позитивною, отже,

Ця нерівність показує, що нижня межа параметра 1/kможе бути визначена по значенню найглибшого мінімуму на кривій Iэкс(S)/f2(S) тобто

1/kmin = [<I(S)>/f2(S) — Iэкс(S)/f2(S) ]max(155)

Інтенсивність фону — теж позитивна величина. Тоді

тобто

Верхня межа параметра 1/kвизначиться якнайменшим значенням функції <I(S)>/f2(S) ,тобто

(156)

Нерівності (155) і (156) обмежують можливі значення 1/k.

Як нормуючий множник можна узяти середнє значення, обчислене із співвідношення

(157)

На мал. 4.6 як ілюстрація показані криві Iэкс(S)/f2(S) і <I(S)>/f2(S) для знаходження 1/kminі 1/kmax. Згідно малюнку якнайменше значення <I(S)>/f2(S) = 4,3 при S = 1,5 Å-1, а найбільше значення різниці [<I(S)>/f2(S) — Iэкс(S)/f2(S) ]max = 2,5 при S =4,0 Å-1. Отже, 1/k= (4,3 + 1,5)/2 = 2,9; k= 0,35. Висловлений спосіб визначення нормуючого множника і інтерференційної функції розсіювання електронів не пов'язаний з громіздкими обчисленнями. Він простий і доступний. На прикладі германію і кремнію було показано, що визначувані цим методом структурні параметри повністю співпадають зданими рентгенографічних досліджень.

Точність визначення структурних параметрів

Як наголошувалося, основними кількісними характеристиками структури рідин є радіальні функції розподілу атомної і електронної густини.

Точність, з якою можуть бути визначені міжатомні відстані і числа найближчих сусідів, зв'язана: а) з наближеним характером рівнянь, що зв'язують структуру речовини з кутовим розподілом інтенсивності розсіювання, обмеженою точністю табличних значень атомних чинників і некогерентного розсіювання, неоднозначністю вибору нормуючого множника; б) з труднощами експериментального характеру (наприклад, обривом кривої інтенсивності при кінцевому значенні S), а також неточностями вимірювання і обліку різних чинників; погрішностями визначення коефіцієнта поглинання, впливом некогерентного фону. Подолання експериментальних труднощів досягається зйомкою в строго монохроматичному випромінюванні, застосуванням сцинтиляційних лічильників для реєстрації розсіяного рентгенівського випромінювання, секторної методики в електронографії. Сучасна апаратура дозволяє вимірювати інтенсивність розсіювання з точністю 2—3%. Вплив обриву кривої інтенсивності на вигляд функції розподілу піддається аналітичному опису. Всесторонній аналіз цього питання був проведений В. Н. Пилиповичем, Р. Хоземаном, Я. І. Стецивом і ін.

Помилкові максимуми радіальних функцій розподілу. Найістотнішою у визначенні структурних параметрів рідин і аморфних тіл є помилка, що виникає через обрив кривої інтенсивності. Вона може привести до виникнення помилкових максимумів радіальної функції розподілу, до зміни положення максимумів, їх ширини і форми. Щоб виробити кількісну оцінку цієї помилки, потрібно знати функцію а(S)для явно відомого розподілу атомів. З цією метою скористаємося рівнянням (135), з якого виходить, що

(158)

Виключаючи нульове розсіювання, одержимо

(159)

Припустимо, що максимуми на кривій розподілу атомної густини мають форму кривих Гауса. Тоді загальна функція може бути представлена у вигляді

(160)

Підставляючи (160) в (159) і обчислюючи інтеграл, знаходимо

(161)

З цього рівняння виходить, що чим більше <ΔRk2> тим швидше затухає а(S), осцилюючи щодо одиниці. Якщо ж <ΔRk2> = 0, що відповідає розподілу атомів в кристалі, то

(162)

Скориставшися аналітичним виразом а(S), знайдемо функцію розподілу, відповідну k-му координаційному максимуму, по формулі

(163)

де Smax— найбільше значення S, до якого визначена крива а(S);Rk— відстань від початку координат до основи перпендикуляра, опущеного з вершини максимуму кривої розподілу на вісь абсцис.

Цей інтеграл обчислюється аналітично тільки для двох граничних випадків: Smax → ∞ і Smax → 0. У першому випадку одержуємо початкову функцію Гауса: