Смекни!
smekni.com

Рентгеноструктурний аналіз молибдену (стр. 4 из 15)

Якщо первинний пучок рентгенівського випромінювання неполяризований, то формула для інтенсивності розсіювання одним електроном набуває вигляду

(21)

де (1+cos22θ)/2 = ρ(θ) — кутова залежність інтенсивності розсіяного рентгенівського випромінювання одним електроном названа поляризаційним чинником. Наявність цього множника у формулі (21) указує на те, що рентгенівське випромінювання при розсіянні частково поляризується. При гранично малих кутах розсіювання поляризаційний чинник рівний одиниці. Із збільшенням кута розсіювання цей чинник зменшується і при 2θ = 90° досягає значення, рівного 1/2. Таким чином, в різних напрямах інтенсивність розсіювання рентгенівського випромінювання одним електроном неоднакова. У напрямі первинного пучка і у зворотному напрямі інтенсивність розсіювання максимальна, а в перпендикулярному напрямі — мінімальна. Якщо у формулу (21) підставити значення постійних m, e і cто одержимо

(22)

Отже, один вільний електрон розсіює в одиницю тілесного кута 10-26частину інтенсивності первинного пучка. Це значення розсіюваної інтенсивності приймають за умовну одиницю і використовують для нормування кривих інтенсивності. Приведені формули справедливі для будь-якого електромагнітного випромінювання, у тому числі і для видимого світла, довжини хвиль якого набагато більше розміри атомів і молекул.

Проте у разі видимого світла хвилі, випромінювані атомами і молекулами, не інтерферують одна з одною, оскільки під дією світлової хвилі всі електрони атомів здійснюють коливання в однаковій фазі. Атоми і молекули в полі світлової хвилі поводяться подібно елементарним електричним диполям. Картина істотно змінюється, якщо довжина хвилі падаючого випромінювання менше розміру атома. Тепер уже електрони в різних частинах атома коливаються в неоднакових фазах. Випромінювані ними хвилі приходять в точку спостереження з деякою різницею фаз і інтерферують одна з одною. Результат цієї інтерференції залежить від числа електронів в атомі і їх просторового розподілу. Досвід показує, що не все розсіяне випромінювання має ту ж довжину хвилі, що і первинне. Деяка його частина розсівається атомами некогерентно і участі в інтерференції не бере. У структурному аналізі використовується тільки когерентне розсіювання.

Розсіювання рентгенівського випромінювання вільним атомом

Електрони в атомі не можна розглядати як вільні, тому інтенсивність розсіювання рентгенівського випромінювання атомом не може бути одержана простим складанням інтенсивностейрозсіювання окремими електронами. При розрахунку інтенсивності розсіювання атомом необхідно враховувати різницю фаз вторинних хвиль, випромінюваних електронами в різних точках атома.

Розглянемо спочатку два електрони, що знаходяться в атомі в точках А і B на відстані r один від одного. Позначимо nіn0— одиничні вектори у напрямі нормалі до фронту падаючої і розсіяної хвилі (мал. 2.2). Різниця ходу проміння, розсіяного електронами,

∆l = |AD|—|CB| = rcosβ—rcosβ0 = rnrn0 = r(nn0) (23)

де β0—кут між напрямом падаючого променя і вектором r ; β—те ж, для розсіяного променя. Якщо r(nn0) = 2k(λ/2) те розсіяні хвилі підсилять одна одну, якщо ж r(nn0) = (2k + 1) λ/2 те ослаблять. Рівняння (23) виражає умову інтерференції розсіяних хвиль

r(cosβ—cosβ0) = kλ(24)


При k = 1 і β0 = 90° одержуємо cos β =λ/r . Оскільки cosβ ≤ l, то звідси витікає, що інтерференція розсіяних хвиль виникає лише у разі, коли довжина хвилі менше відстані між частинками, що розсіюються. Якщо ж λ > r, інтерференція розсіяних хвиль не відбувається, Помноживши (23) на хвильове число 2π/ λ, одержимо вираз для різниці фаз хвиль, розсіяних двома електронами атома,

∆φ = (2π/ λ)r(nn0) (25)

Припустимо, що електрони в атомі розподілені безперервно. Виділимо в ньому елемент об'єму dViі позначимо ρe (ri) — електронну густину в точці на відстані riвід центру атома. Тоді число електронів, що знаходяться в об'ємі dViвизначиться величиною ρe(ri) dViа амплітуда хвилі, розсіяної ними, — добутком

Сумарна амплітуда хвиль, розсіяних атомом,

(26)

Вектор nn0 співпадає з напрямом нормалі до площини, що відображає рентгенівське випромінювання. У атомі відбиваючих площин зрозуміло ні. Проте поняттям «нормаль до відбиваючої площини», ми користуватимемося і в даному випадку, оскільки вектор nn0 визначає напрям осі, від якої відлічується полярний кут.

Якщо кут між напрямами первинного пучка і уявною площиною, що відображає, позначити θ, то кут розсіювання 2θ. Очевидно, що |nn0 | = 2sinθ(мал.2.2) Позначаючи α — кут між векторами r і nn0, одержимо для різниці фаз розсіяних хвиль вираз

(27)

де S = (4π/λ)sinθ Параметр S, залежний від довжини хвилі і кута розсіювання, зустрічається в структурному аналізі і в теорії твердого тіла. Він пов'язаний з міжплощинною відстанню d для площин кристалічних граток, від яких походить віддзеркалення першого порядку під кутом θпри довжині хвилі λ.Згідно умові віддзеркалення 2dsinθ= λ , маємо

2sinθ/ λ = 1/d або 4πsinθ/ λ = 2π/d, тобто S = 2π/d(28)

З другого боку, параметр S пов'язаний з хвильовим вектором розсіяної хвилі співвідношенням

S = 2|k|sinθ(29)

а також з вектором оберненої гратки рівністю

S = 2π|r*| (30)


Підставляючи (27) в (26), одержимо для амплітуди розсіювання атомом вираз

(31)

Щоб додати йому конкретніший вигляд, припустимо, що розподіл електронів в атомі сферично симетричний і ρ(r) залежить тільки від модуля вектора r, але не від його напряму. В цьому випадку елемент об'єму dV = r2drsinαdαdφ. Вираз (31) можна написати у вигляді

(32)

Інтегруючи (32) по α і φ, одержимо

(33)

де 4πr2 ρe (r)drчисло електронів в сферичному шарі атома між радіусами r і r + dr .

Функція

(34)

характеризує розсіюючу здатність атома і називається атомною амплітудою, а F2(S) — атомним чинником розсіювання. Числове значення F(S) показує, в скільки разів амплітуда розсіювання атомом в даному напрямі більше амплітуди розсіювання одним електроном. При S → 0 функція sinSr/(Sr) → 1; значення F(S) при нульовому куті розсіювання рівне числу електронів атома:

(35)

Отже, чим вище порядковий номер хімічного елементу, тим більше числове значення F(S). Із збільшенням параметра S функція F(S) монотонно убуває.

Щоб обчислити атомну амплітуду F(S) теоретично, потрібно знати просторовий розподіл електронної густини в атомі. Згідно квантової теорії, вірогідність знаходження електрона в точці на відстані r від центру атома визначається хвильовою функцією |Ψ|2 . У разі атома водню

(36)

де r1— радіус першої боровськой орбіти атома Н. Відповідний вираз для F(S) приймає вигляд

(37)

звідки

(38)

Ця формула показує, що атомна амплітуда розсіювання залежить тільки від S =2ksinθ. Як ρ(r) функція F(S) сферично симетрична. Відмінність між F(S) і ρ(r)полягає у тому, що функція ρ(r)описує розподіл електронної густини в звичному просторі, F(S) представляє цей розподіл в k— просторі, тобто просторі хвильових векторів. Числові значення F(S) для атомів деяких елементів приведені в довідкових таблицях. Знаючи F(S) можна написати вираз для інтенсивності розсіювання атомів:

(39)

Найбільший внесок в когерентне розсіювання вносять внутрішні електрони атома. Зовнішні електрони атома обумовлюють інтенсивне когерентне розсіювання при малих кутах. Це виразно видно з мал. 2.3,а, на якому представлено радіальний розподіл електронної густини ls22s22p63s23p6електронів іона К+. Там же показане (мал. 2.3,6) відповідне їм f-криві розсіювання. З малюнка видно, що чим далі від ядра знаходиться дана група електронів, тим швидше убуває відповідна їй f-функція з кутом розсіювання. Дійсно, порівнюючи f-криві для ls2-,2s2- і 3s2 электронов іона К+, бачимо, що значення f1s, обумовлене розсіюванням ls2-электронов (r1= 0,03 Å), майже не змінюється з кутом розсіювання; f2s — крива, обумовлена розсіюванням 2s2-электронами (r2 = 0,18 Å), монотонно спадає, тоді як для f3s-кривої (r3= 0,6 Å) характерне швидке убування з переходом в область негативних значень з подальшою сильно затухаючою осциляцією біля осі абсцис. Амплітуда сумарного розсіювання іона К+