Перший доданок визначає інтенсивність розсіювання окремими атомами за відсутності інтерференції між ними; друге — розподіл інтенсивності розсіювання за наявності інтерференції, обумовленої ближнім порядком в розташуванні атомів. Третій доданок визначає інтенсивність розсіювання у області дуже малих кутів. Числове значення цього доданку залежить від розміру і форми зразка і не залежить від його внутрішньої структури. Дійсно, максимальне значення функції φ(SL)= 3(sinSL—SLcosSL)/(SL)3 дорівнює одиниці при SL = 0. Із зростанням SL функція φ(SL) здійснює сильно затухаючі осциляції щодо нульових значень, визначуваних рівнянням SL = tgSL, тобто при SL рівних 4,49; 7,74. При SL> 4,49 значення φ(SL) малі в порівнянні з одиницею. З рівності S= 4,49/L витікає, що для зразків порядка 0,1—0,2 см значення S = 4,5•10-7 Å -1. Малокутове розсіювання на зразках таких розмірів співпадає з первинним пучком. Його інтенсивність не може бути заміряна за допомогою звичних засобів. Це розсіювання експериментально виявляється в тих випадках, коли в досліджуваній речовині є флуктуації, колоїдні частинки або макромолекули розміром до 103 Å. Таким чином, за винятком малокутового розсіювання, інтенсивність, вимірювана експериментально, визначається рівнянням
(88)Щоб написати аналогічні рівняння для випадку розсіювання електронів тією ж речовиною, слідує атомну амплітуду розсіювання рентгенівського випромінювання замінити на атомну амплітуду розсіювання електронів, залишивши решта членів без змін. Якщо при дослідженні застосовуються нейтрони, то рівняння (88) можна представити у вигляді
(89)де bК— амплітуда когерентного розсіювання нейтронів зв'язаними ядрами, усереднена по станах спинів і ізотопах даного елементу. Застосовуючи до рівнянь (88) і (89) Фурье-перетворення, одержимо:
(90) (91)Ці рівняння лежать в основі вивчення структури атомарних рідин і аморфних тіл.
Параметри, визначувані по кривих інтенсивності
Безпосереднім результатом рентгено-, електроно- і нейтронографічних досліджень рідин і аморфних тіл є інтерференційна картина. У разі одноатомних рідин і аморфних тіл вона несе інформацію про ближній порядок в розташуванні атомів. Картина розсіювання молекулярними рідинами і аморфними тілами відображає атомний склад молекул, їх конфігурацію і взаємне розташування. Задача дослідження полягає в тому, щоб по інтерференційній картині відтворити просторову структуру речовини, встановити зв'язок між структурою і фізичними властивостями.
Для опису структури і структурно – чутливих властивостей рідин і аморфних тіл використовується не вся інтенсивність розсіювання, а лише її інтерференційна (структурна) частина
(92)Числові значення структурного чинника а(S) рівного відношенню спостережуваної інтенсивності когерентного розсіювання до інтенсивності незалежного розсіювання того ж числа атомів. При великих S, а також в тих випадках, коли розподіл атомів хаотичний, функція а(S)= 1. Під час переходу речовини із стану з неврегульованим розташуванням атомів в стан з впорядкованим їх розташуванням відбувається перерозподіл інтенсивності, посилення її в одних напрямах і ослаблення в інших. Функція а(S) осцилює з амплітудою, що поступово зменшується, біля одиниці, залишаючись позитивною при всіх значеннях S(мал. 2.11).
Згідно (92) послідовність максимумів а(S) визначається послідовністю максимумів функції sinSR/(SR). Ця функція має максимуми при значеннях SR, рівних 7,73; 14,06; 20,46; ... Отже,
R1 = 7,73/(S1)max = 14,06/(S2)max = 20,46/(S3)max = … (93)
Звідси видно, що у разі одноатомних рідин і аморфних тіл середня відстань від фіксованого атома до його найближчих сусідів визначається по значенню S, відповідному будь-якому максимуму інтерференційної функції а(S). Це означає, що визначаючим в утворенні картини розсіювання одноатомними рідинами і аморфними речовинами є найкоротша міжатомна відстань R1 що повторюється в різних порядках інтерференції.
Характерний, що значення R1 визначуване по кривій а(S), близько до значення істинної найкоротшої міжатомної відстані, тільки для рідин з щільною упаковкою атомів (зріджені, інертні гази; типові метали). Якщо ж взаємне розташування атомів в рідині не відповідає щільній упаковці (олово, вісмут, германій, кремній), значення R1 обчислене по формулі (93), не співпадає із значенням найкоротшої міжатомної відстані. В цьому випадку експериментальна крива а(S) визначається накладенням ряду кривих, описуваних рівнянням (92).
Співвідношення S1R1 = 7,73, тобто 4πR1sinθ = 7,73λ, аналогічно формулі Вульфа-Брегга 2dsinθ = λ. З цих формул виходить, що
Відношення цих величин дає R1= 1,23d1. Рівняння Вульфа — Брегга для цього окремого випадку має вигляд
2R1sinθ = 1,23λ(94)
Таким чином, параметр S, відповідний першому максимуму а(S), пов'язаний з найкоротшою міжатомною відстанню R1рівнянням Вульфа—Брегга, в яке введений поправочний коефіцієнт 1,23. Рівняння (94) і еквівалентну йому формулу R1= 7,73/S1 застосовують у разі молекулярних рідин для оцінки середньої відстані між сусідніми молекулами. При цьому припускають, що перший максимум інтенсивності цілком обумовлюється міжмолекулярним розсіюванням, просторовою конфігурацією молекул і їх упаковкою. Важливо відзначити, що про ступінь ближнього порядку в рідині і твердій аморфній речовині можна судити по ширині і висоті максимумів кривої а(S). Чим більше їх висота, тим менш інтенсивно тепловий рух атомів і тим вищий ступінь їх впорядкованості. Таким чином, маючи експериментальні криві розсіювання, можна по них визначити найкоротшу відстань між атомами і молекулами рідини, з'ясувати характерні особливості розташування найближчих сусідів, тенденції зміни упаковки частинок з температурою. Зв'язок інтерференційної функції із стисливістю. Граничне значення функції а(S) у напрямку до малих кутів розсіювання для будь-якої речовини пов'язано з його стисливістю. При цьому йдеться про граничне значення при S= 0 виразу (88), який був одержаний з точнішого рівняння (87) при виключенні з нього доданку, який визначається зовнішньою поверхнею досліджуваної речовини і не пов'язане з його структурою. Величина а(0), яку визначимо, є граничним значенням розсіюючої здатності речовини, віднесеної до одного атома. Вираз (88) для S =0 перепишемо у вигляді
(95)Враховуючи умову нормування функції ρ(R), одержимо
Інтенсивність розсіювання при S = 0 рівна
(96)Це співвідношення показує, що значення інтерференційної функції при нульовому куті розсіювання представляється як міра флуктуації числа атомів, що містяться в даному об'ємі. Ці флуктуації пов'язані з коефіцієнтом ізотермічної стисливості βT = 1/ρat (dρat /dp)Tспіввідношенням
(97)Таким чином,
a(0) = < ρat >kTβT(98)
Згідно цій формулі граничне значення а(0) буде більше для речовин (газів), що сильно стискаються, ніж для тих, що малостискаються (рідин, аморфних тіл). Значення а(S) при малих кутах розсіювання різко зростає при підході до критичної точки, що пов'язане з виникненням флуктуації густини — областей згущування і розрідження. Рідина стає все більш «пористою». Безпосередньо біля критичної точки області згущувань чергуються з областями розріджень. Через необмежене зростання стисливості речовини флуктуації густини можуть перевищувати 100 Å. Користуясь формулою S = 2π/d, знаходимо, що розсіювання на флуктуаціях такої величини виявляється при S = 0,06 Å-1. Це при довжині хвилі λ =1,54 Å відповідає куту розсіювання близько 40`.
Визначивши а(0), можна по формулі (98) обчислити βT. Проте значення а(0) не можна заміряти експериментально, якщо криві розсіювання виходять від плоскої поверхні зразка. При зйомці на проходження потрібно знати інтенсивність первинного пучка рентгенівського випромінювання або нейтронів. Вимірювання абсолютного значення цієї інтенсивності зв'язане з технічними труднощами. Практично зручніше визначати βTне через граничне значення інтенсивності а(0), а через радіальну функцію ρ(R). Замість (95) можна написати
(99)звідки
(100)Цей вираз вельми важливе для пояснення впливу сил тяжіння і відштовхування на пружні властивості рідин. Приведемо декілька прикладів.