Смекни!
smekni.com

Термометры сопротивления и измерительные приборы к ним (стр. 2 из 5)

здесь R (t') и R0 – сопротивления термометра при температуре t' и 0°С соответственно, Ом; α и δ — константы, определяемые измерением сопротивления термометра в тройной точке воды, точке кипения воды или затвердевания олова и точке затвердевания цинка.

Последнее уравнение (2.3) эквивалентно уравнению

(2.4)

где A = α(1+δ/ 100°С); B = -10-4αδ°С-2.

Для области от 13,81 (–259,34) до 273,15 (0) К (°С) температуру определяют по формуле

WT=Wст(T) + ∆W(Т) (2.5)

где WТ – относительное сопротивление платинового термометра; Wcт(Т) – относительное сопротивление, соответствующее стандартной функции.

Поправки ∆W(T) при температурах основных реперных точек получают из измеренных значений WТ и соответствующих значений Wст(T). Поправка ∆W(T) при промежуточных температурах определяют интерполяционными формулами.

До введения МПТШ-68 применялась шкала МПТШ-48. Чистота платины, из которой изготовляют эталонный термометр для воспроизведения шкалы МПТШ-48 в области от –182,97 до 630,5°С, должна быть такой, чтобы для него соблюдалось отношение сопротивлений R100/R0 ≥ 1,392.

Для интервала от 0 до 630,5°С МПТШ-48 используется интерполяционная формула

Rt = R0(1+At+Bt2), (2.6)

где Rt – сопротивление термометра при температуре t, Ом; R0 – сопротивление того же термометра при 0°С, Ом.

Для интервала от –182,97 до 0°С применяется уравнение

Rt = R0[1 + At + Bt2 + Ct3 (t–100)]. (2.7)

Постоянные A, B и C определяются в точках кипения воды, серы (или в точке затвердевания цинка) и кислорода.

Образцовые платиновые термометры сопротивления 1-го и 2-го разрядов, применяемые от –182,97 до +630,5°С, изготовляют из чистой платины, позволяющей получить для них отношения сопротивлений R100/R0≥1,392 и R100/R0≥1,391 соответственно. Образцовые термометры 1-го разряда, поверяемые по рабочим эталонам, применяют для поверки образцовых термометров 2-го разряда, образцовых ртутных термометров, образцовых медь-константановых термоэлектрических термометров и для контроля температуры кипения или затвердевания веществ, применяемых при поверке термометров. Образцовые термометры сопротивления 2-го разряда служат для поверки рабочих термометров.

Значения сопротивлений образцовых термометров 1-го и 2-го разрядов в свидетельствах указываются с количеством значащих цифр, соответствующим точности градуировки.

Платиновые термометры сопротивления повышенной точности, применяемые для точных измерений температуры, изготовляют из той же платины, что и образцовые термометры. В зависимости от требований, предъявляемых к точности измерения температуры, термометры сопротивления повышенной точности поверяются по методике поверки образцовых термометров 1-го или 2-го разрядов.

Для области температур от 13,8 до 273,15 K применяют образцовые платиновые термометры ТСПН-1 (погрешность ±0,01 К). Изготовляют также для указанной области температур платиновые термометры повышенной точности ТСПН-2А и ТСПН-Б, различающиеся между собой защитными гильзами, в которых находятся чувствительные элементы.

Для измерения низких температур в области от –260 до +250°С изготовляют платиновые термометры повышенной точности типа ТСП-4050 и ТСП-8003, пределы допускаемой погрешности которых ±0,2°С, а также типа ТСП-9003 и ТСП-8004, погрешность которых лежит в пределах от –0,05 до +0,1°С.

Технические платиновые термометры сопротивления типа ТСП предназначаются для длительного измерения температуры от –200 до 650°С. Термометры сопротивления этого типа изготовляются двух классов (1-го и 2-го) с номинальными значениями сопротивлений при 0°С (R0) равными 10; 46; 100 Ом, которым присвоено обозначение градуировки соответственно гр20, гр21 и гр22.

Термометры ТСП с начальным сопротивлением R0= 10 Ом целесообразно применять для измерения температуры выше 200°С. При этом имеется в виду, что термометр сопротивления присоединяется к измерительному прибору по трехпроводной схеме. В тех случаях, когда термометр используется для измерения низких температур (ниже 0°С), рекомендуется применять высокоомные термометры с R0= 46 Ом, а в некоторых случаях с R0= 100 Ом. При применении высокоомных термометров при прочих равных условиях изменение показаний измерительного прибора вследствие изменения сопротивления соединительных проводов (при двух- или трехпроводной схеме включения термометра), под влиянием температуры окружающего воздуха, будет значительно меньше, чем при использовании низкоомных термометров сопротивления.

В целях обеспечения взаимозаменяемости технических термометров типа ТСП установлены допуски на отклонения сопротивления чувствительного элемента термометра при 0°С (R0) от номинального значения и отношения сопротивлений R100/R0. Для термометров ТСП класса 1 допустимое отклонение сопротивления чувствительного элемента R0от номинального значения не должно превышать ±0,05%, а для термометров класса 2 – ±0,1 %. Отношения сопротивлений R100/R0 установлены равными 1,391 ± 0,0007 для термометров класса 1 и 1,391 ± 0,001 для термометров класса 2. Принятые допуски на основные параметры технических платиновых термометров сопротивления позволили стандартизировать их градуировочные таблицы и установить максимально допускаемые отклонения значения электрического сопротивления термометров ТСП от данных этих таблиц. Максимально допускаемые отклонения от градуировочных таблиц могут быть вычислены по формулам, приведенным в таблице 1. В этой таблице t – абсолютное значение температуры чувствительного элемента термометра, °С.

Таблица 1. Максимальные допускаемые отклонения от градуировочных таблиц термометров сопротивления ТСП и ТСМ

Тип термометра Класс точности Интервал температуры,°С Максимальное допускаемое отклонение, ∆t
ТСПТСПТСМТСМ 1223 0 – 650 0 – (–200) 0 – 650 0 – (–200)–50 – (+180)–50 – (+180) ±(0,15+3,0·10-³t)±(0,15+4,5·10-³t)±(0,30+4,5·10-³t)±(0,30+6,0·10-³t)±(0,30+3,5·10-³t)±(0,30+6,0·10-³t)

Следует отметить, что значение электрического сопротивления платинового термометра при 0°С ≤ t≤650°С и –200°С ≤ t ≤ 0°С, приведенные в градуировочных таблицах, вычислены соответственно по формулам (2.6) и (2.7). При вычислении значений Rtпо этим формулам постоянные коэффициенты принимались равными: А = 3,96847·10-³ °С-¹, В = –5,847·10-7 °С-²; С = –4,22·10-¹² °С-4.


3. Медь и изготовляемые из нее термометры сопротивления

К достоинствам меди, как материала, применяемого для изготовления чувствительных элементов технических термометров сопротивления типа ТСМ, следует отнести дешевизну, простоту получения тонкой проволоки в различной изоляции, возможность получения проводниковой меди высокой чистоты. Температурный коэффициент электрического сопротивления проводниковой меди лежит в пределах от 4,2·10-³ до 4,27·10-³ °С-¹.

Зависимость электрического сопротивления меди от температуры в широком интервале температур подчиняется уравнению

Rt = R0(l +αt), (3.1)

где Rt и R0 – сопротивления данного образца меди (чувствительного элемента медного термометра) соответственно при температуре tи 0°С; α – температурный коэффициент электрического сопротивления, характерный для данного образца медной проволоки, из которого изготовлен ЧЭ термометра.

Температурный коэффициент сопротивления αопределяют из значений сопротивлений R0и Rtчувствительного элемента медного термометра, измеренных соответственно при точке таяния льда и температуре кипения воды. Медная проволока, применяемая для изготовления чувствительных элементов медных термометров ТСМ, имеет температурный коэффициент сопротивления α = 4,26·10-3 °С-1.

Линейный характер зависимости сопротивления меди от температуры является ее достоинством. К числу недостатков меди следует отнести малое удельное сопротивление (ρ=1,7·10-8Ом·м) и интенсивную окисляемость при невысоких температурах. В атмосфере инертных газов медь ведет себя устойчиво при более высоких температурах. При установлении верхнего температурного предела применения медного термометра сопротивления необходимо учитывать, какой электрической изоляцией покрыта медная проволока, из которой изготовлен его чувствительный элемент. Термометры сопротивления с ЧЭ, изготовленными из медной проволоки диаметром 0,1 мм, изолированной эмалью, могут быть использованы для длительного измерения температуры не выше 100°С, а из медной проволоки с кремнийорганической или винифлексовой изоляцией – до 180°С.

Медные термометры сопротивления типа ТСМ могут применяться для длительного измерения температуры от –50 до 180°С. По точности они подразделяются на два класса (2 и 3). Номинальные значения сопротивления при 0°С (R0) для термометров типа ТСМ установлены равными 53 и 100 Ом, которым присвоено обозначение градуировки соответственно гр23 и гр24. Допускаемое отклонение сопротивления чувствительного элемента термометра R0от номинального значения для обоих классов точности составляет ±0,1%. Отношение сопротивлений R100/R0установлено равным 1,426±0,001 для термометров класса точности 2 и 1,426±0,002 – для термометров класса точности 3.

Из медной проволоки приборостроительная промышленность изготовляет термометры сопротивления типа ТСМ только 3-го класса точности.


4. Никель и изготовляемые из него термометры сопротивления

Основным достоинством никеля является то, что он обладает высоким температурным коэффициентом электрического сопротивления (α = 6,66·10-3 °С-1) и большим удельным сопротивлением (ρ≈12,8·10-8Ом·м). К числу недостатков никеля следует отнести значительную окисляемость при высоких температурах и большую зависимость температурного коэффициента сопротивления от степени чистоты металла. Зависимость сопротивления никеля от температуры имеет резко нелинейную характеристику.