где
- однородные векторные полиномы степени , напримерЗдесь
и - некоторые заданные дифференциальные операторы.Наряду с системой (4) рассматривается соответствующая линеаризованная подсистема
(5)
и ,аналитическое решение которой, удовлетворяющее соответствующим краевым и начальным условиям, представляется суперпозицией нормальных волн
,где
- постоянные комплексные амплитуды; - число нормальных волн -го типа. Возникает вопрос - есть ли существенная разница между этими двумя системами, иначе говоря, - насколько существенно присутствие малой нелинейности. В соответствии с теорией нормальных форм (см. например [4]), решение уравнений (4) ищется в форме почти тождественного преобразования переменных, т.е.(6)
где
- неизвестная -мерная векторная функция, компоненты которой формально представимы рядом по , т.е. почти билинейная форма:(7)
,Например
где
и - неизвестные коэффициенты, подлежащие определению. При подстановке (6) в (4), получаются следующие дифференциальные уравнения с частными производными для нахождения : .Очевидно, что собственные числа оператора
, действующего на полиномиальные компоненты функции , т.е. , представляют собой линейные целочисленные комбинации собственных чисел оператора при различных значениях векторов .В первом приближении получаются линейные уравнения для нахождения нормализующего преобразования:
.Всякой полиномиальной компоненте
соответствует собственное число , т.е. , где или ,в то время как
в наинизшем приближении разложения по .Аналогично, во втором приближении разложения решения по
:собственные значения оператора
можно выразить в следующем виде: , где . Продолжая и далее подобные итерационные процедуры, можно построить искомое преобразование (7).Таким образом, если хотя бы одно собственное значение оператора
стремится к нулю, , то соответствующие коэффициенты ряда (7) стремятся к бесконечности, т.е. говорят, что в системе наступает резонанс порядка . В противном случае, если собственные значения оператора не равны нулю, то системы (4) и (5) называются формально эквивалентными, поскольку ряд (7) все же может быть расходящимся. Если же оказывается ограниченной аналитической функцией, то системы (4) и (5) считаются аналитически эквивалентными.В теории нормальных форм существует основная теорема Пуанкаре, накладывающая одновременно весьма сильные условия на спектральные параметры системы и на коэффициенты нормализующего преобразования, для того чтобы две подходящие различные системы обыкновенных дифференциальных уравнений оказались аналитически эквивалентными. Во множестве задач о колебаниях нелинейных механических систем условия теоремы Пуанкаре, как правило, не выполняются. Например, основные типы резонансов второго порядка ассоциируются с трехволновыми резонансными процессами, когда
и ; процессом генерации второй гармоники, когда и .Наиболее важные случаи резонансов третьего порядка следующие: четырехволновые резонансные процессы, при выполнении условий синхронизма:
; (взаимодействие двух пар волн), или при иных условиях синхронизма и (распад высокочастотной волны на тройку низкочастотных волн); вырожденные трехволновые резонансные процессы, при и ; генерация 3-ей гармоники, при и .Во всех приведенных примерах резонансов второго и третьего порядков в общем случае наблюдается ярко выраженная амплитудная модуляция, глубина которой растет, когда фазовая расстройка стремится к нулю. Волны, фазы которых удовлетворяют условиям фазового синхронизма, формируют так называемые резонансные ансамбли.
Наконец, во втором нелинейном приближении всегда присутствуют так называемые нерезонансные взаимодействия, когда условия фазового синхронизма вырождаются в следующие “тривиальные” случаи: кросс-взаимодействия пары волн, при
и ; самовоздействия волны, и .Нерезонансные взаимодействия в основном характеризуются только лишь фазовой модуляцией волн.