Основное предложение настоящего пункта можно сформулировать следующим образом. Если в системе (4) нет резонансов, начиная с порядка
и до порядка включительно, то следует ожидать, что нелинейность приведет лишь только к малым поправкам к решениям соответствующей линеаризованной системы. Эти поправки будут того же порядка, , что и мера нелинейности, и вплоть до времен .Для получения формально пригодного преобразования (7) в резонансном случае, следует пересмотреть структуру системы сравнения (5) в сторону модификации ее правой части:
(8)
; ,таким образом, чтобы нелинейные слагаемые
, где - однородные полиномы -го порядка, содержали бы только лишь резонансные члены. В этом случае уравнения (8) ассоциируются с так называемыми нормальными формами. В практических задачах, ряды обычно укорачиваются до одного-двух слагаемых соответствующего порядка по .Теория нормальных форм достаточно просто обобщается на случай так называемых существенно нелинейных систем, поскольку малый параметр
может быть опущен в выражениях (4) - (8) без всякого ущерба для конечного результата, при этом и оператор может также зависеть от пространственной переменной .Формально, собственные значения оператора
могут быть произвольными комплексными числами. Это означает то, что резонансы порядка могут быть определены и проклассифицированы даже и для неколебательных процессов, например применительно к эволюционным уравнениям.Резонанс в многоволновых системах
Явление резонанса играет ключевую роль в динамике большинства физических систем. Интуитивно, резонанс ассоциируется с одним частным случаем силового возбуждения линейных колебательных систем. Такое возбуждение сопровождается с более или менее скорым ростом амплитуды колебаний при достаточной близости одной из собственных частот колебаний системы к частоте внешнего периодического возмущения. В свою очередь, в случае так называемого параметрического резонанса возникают некоторые рациональные соотношения между собственными частотами системы и частотой параметрического возмущения. Таким образом, резонанс можно проще всего классифицировать, согласно выше приведенному эскизу, по его порядку, начиная с первого,
, если включить в рассмотрение и линейные и нелинейные динамические системы. Поэтому, в общем случае, понятие резонанса в колебательных системах может быть связано с физическим явлением, которое характеризуется накоплением энергии одним или несколькими колебательными объектами за счет энергии другой группы колебательных объектов, когда все колебательные процессы объединены некоторым пространственно-временным сродством. Так называемые нерезонансные процессы, такие как кросс-взаимодействия и самовоздействие, также могут быть включены в подобное определение, но со специальной оговоркой, касающейся их специфических динамических свойств.Для широкого класса механических систем со стационарными краевыми условиями математическое определение резонанса следует из рассмотрения следующих усредненных функций
(9)
, при ,где
- комплексные константы соответствующие решениям линеаризованных эволюционных уравнений (5); - пространственный объем, занимаемый системой. Если функция претерпевает скачек при заданных значениях и , то систему следует отнести к резонансной[5]. Последнее подтверждается основными результатами теории нормальных форм. Резонанс имеет место при условии выполнения условий фазового синхронизма и .Здесь
- число резонансно взаимодействующих квазирармоник; - некоторые целые числа ; и - параметры малой расстройки.Пример 1. Рассматриваются линейные поперечные колебания тонкой балки, подверженной действию малой внешней периодической силы и параметрического возбуждения, согласно уравнению
,где
, , , , , и - некоторые подходящие константы, . Это уравнение переписывается в стандартной форме ,где
, , . При , решение уравнения таково, где собственные частоты удовлетворяют дисперсионному соотношению . Если , тогда малые амплитудные вариации удовлетворяют следующему уравнениюгде
, - групповая скорость амплитудной огибающей. Усреднение правой части этого уравнения, в соответствии с (9), дает , при ; , при и ; во всяком другом случае.Отметим, что резонансные свойства системы с нестационарными краевыми условиями не всегда могут быть обнаружены с помощью функции
.Пример 2. Рассматриваются уравнения, описывающие колебания балки по модели Бернулли-Эйлера:
с граничными условиями
; ; . После приведения уравнений к стандартной форме и использовании формулы (9), определяется скачек функции при условиях