или в векторной форме
Аналогично векторное уравнение напряжений ротора:
В уравнениях (4) и (5) векторы записаны соответственно в системах координат статора и ротора. Для совместного решения уравнений их необходимо привести к одной системе координат.
При исследовании переходных процессов в электродвигателях переменного тока применяют различные ортогональные системы координат, отличающиеся угловой скоростью вращения координатных осей сок, например системы, оси которых неподвижны относительно ротора, или неподвижны относительно статора, или вращаются с синхронной скоростью.
Уравнения асинхронного электродвигателя в системе координат, вращающейся с произвольной скоростью ωк, имеют вид
где ω — угловая скорость вращения ротора; pп — число пар полюсов.
При исследовании переходных процессов в асинхронном электродвигателе, управляемом частотой и напряжением статора, удобно использовать систему координат, вращающуюся со скоростью ωк, равной угловой скорости вращения магнитного поля ω0’, приведенной к числу пар полюсов, равному единице (приведенной к двухполюсному электродвигателю). Предполагается при этом справедливым равенство
где f1 — частота напряжения статора, Гц; ω1 — угловая частота напряжения статора, рад/с.
На основании уравнений (6) для рассматриваемой координатной системы можно записать
где s — скольжение электродвигателя:
(ω0= ω0’/pп — угловая скорость вращения магнитного поля, или синхронная скорость электродвигателя).
Потокосцепления связаны с токами через индуктивности
Для определения электромагнитного момента асинхронного электродвигателя используется векторное произведение ψ1 и i1
тогда
или векторное произведение ψ2 и i2’, тогда
Учитывая выражения (8), можно записать (9) и (10) в виде
Вторые равенства в уравнениях (11), (12) справедливы потому, что векторное произведение двух одинаково направленных векторов равно нулю.
Для полного описания переходных процессов в асинхронном электродвигателе к уравнениям напряжений и моментов следуй добавить уравнение
записанное для скалярных значений моментов М и Мс.
Полученная система уравнений электродвигателя является нелинейной, и решение ее для различных динамических режимов работы электродвигателя может быть выполнено с использованием вычислительных машин. При синтезе систем управления асинхронным электродвигателем целесообразно располагать простыми и наглядными динамическими моделями электродвигателя в виде передаточных функций или структурных схем. Такая возможность появляется, если рассматривать переходные процессы в отклонениях относительно начальных координат электродвигателя.
Сравнительно простая структурная схема может быть получена, если пренебречь активным сопротивлением статорной цепи, т. е. положить R1=0. Безусловно, что такое пренебрежение накладывает определенные ограничения на использование получаемых моделей. Они вполне применимы для систем с небольшим диапазоном регулирования скорости относительно синхронной скорости, для электродвигателей средней и большой мощности. При широком регулировании скорости, а также для электродвигателей малой мощности необходимы уточнения структурных схем.
Для дальнейших исследований динамических свойств асинхронных ^ электродвигателей целесообразно результирующие векторы представить в виде проекций на комплексной плоскости и записать их через вещественные и мнимые части в следующем виде:
Совместив вектор напряжения статора с действительной осью координатной системы, т. е. положив u1β=0, на основании (7) получим
Выразив также электромагнитный момент по уравнению (9) через составляющие векторов тока и потокосцепления
и применив правило векторного произведения векторов, получим абсолютное значение момента:
где
Воспользовавшись выражением (10), можно аналогично получить
где
Составляющие тока ротора могут быть выражены через составляющие потокосцепления в следующем виде:
где k1 - коэффициент электромагнитной связи статора;
k1=Lm/L1; (21a)
С учетом (8) и (21а) можно выражения моментов записать в форме, удобной для вывода передаточных функций двигателя;
или
В случае одновременного изменения частоты и напряжения статора, при котором потокосцепление статора остается постоянным, из уравнений (15) и (16) можно получить
Для двигателя с короткозамкнутым ротором в уравнениях (17), (18)
Рассматривая переменные величины в приращениях относительно начальных значений
и уравнения для динамического режима, связывающие приращения координат:
где
На основании уравнений (27)-(33) можно записать передаточную функцию
Выражение