Плотность Вселенной равна ее критической плотности. В процессе расширения Вселенной площадь сферы увеличивается, а значит, увеличивается ее масса, но плотность всегда равна критической. По этой причине пространство Вселенной для нас и наших приборов всегда будет плоским. В теории Большого взрыва масса Вселенной не изменяется, а это приводит к сингулярностям, особым сверхъвстественным состояниям материи, сосредоточенной в одной точке. Появление сингулярностей предупреждает нас о том, что либо мы применяем неправильную модель, либо вышли за границы применимости теории. В случае общей теории относительности имеет место и то, и другое.
Согласно экспериментальным данным, полученным орбитальным радиотелескопом Давида Вилкинсона (WMAP) и опубликованным в январе 2003 года, отношение полной плотности Вселенной к критической равно
Этот результат полностью соответствует модели Вселенной теории многомерных пространств. Теория Большого взрыва ничем, кроме чистой случайности не может объяснить тот факт, что именно в момент запуска радиотелескопа плотность Вселенной оказалась равна ее критической плотности.Наблюдаемая (светящаяся) масса Вселенной составляет всего лишь 1% от общей массы Вселенной. Масса Вселенной в настоящее время равна
кг, а масса, доступная наблюдению кг, что составляет 18% от массы Вселенной.Если массу Вселенной принять за 100%, то «темная энергия» составляет 81% массы Вселенной, «темная масса» составляет 17% и лишь 1% составляет светящаяся масса.
«Темная энергия» - это потенциальная энергия разности масс Вселенной и наблюдаемой массы. Она гравитационно взаимодействует со светящейся массой, но видеть мы ее не можем. Такое возможно лишь в случае, когда скорость гравитации значительно больше скорости света. Ньютон в законе всемирного тяготения принял скорость гравитации равной бесконечности, Эйнштейн полагал, что скорость гравитации равна скорости света, а в теории многомерных пространств максимальная возможная скорость передачи взаимодействия равна
м/c.О «темной массе» нам известно лишь, что она гравитационно взаимодействует с наблюдаемой нами светящейся массой Вселенной. «Темная масса» включает массу черных дыр и массу, о физической сущности которой мы ничего не знаем.
Главное отличие теории гравитации Эйнштейна от теории гравитации Ньютона состоит в том, что в теории Эйнштейна появляется так называемый гравитационный радиус сферы Шварцшильда. Луч света будет захвачен гравитационным центром, если он пролетает на расстоянии менее 4/3 гравитационного радиуса. На расстояниях, значительно превышающих гравитационный радиус, теории тяготения Ньютона и Эйнштейна дают практически одинаковый результат (рис.4).
В теории многомерных пространств гравитационному радиусу можно дать простое физическое истолкование. Гравитационный центр состоит из множества частиц двумерного пространства. Если всю пленку частиц (а она имеет толщину) собрать в одно место, то получим шар, радиус которого будет гравитационным радиусом. Cжимать этот шар, не нарушая структуру двумерного пространства невозможно. Сжимая шар, можно получить одномерное пространство (струну).
Кривая тяготения Эйнштейна получается из кривой Ньютона параллельным переносом вправо на величину гравитационного радиуса, а кривая тяготения теории многомерных пространств получается из кривой Эйнштейна сдвигом вниз на величину ускорения расширения Вселенной, что приводит к появлению гравитационных сил отталкивания.
В своей первой версии космологической модели Эйнштейн предполагал, сам того не подозревая, наличие гравитационных сил отталкивания. Он ввел в теорию лямбда-член, чтобы стабилизировать Вселенную, но впоследствии, когда было точно установлено, что Вселенная расширяется, он отказался от лямбда-члена. Современная космология опять возвращается к лямбда-члену и к гравитационным силам отталкивания. Само по себе ускорение расширения Вселенной невелико, оно всего лишь в
раз больше гравитационной постоянной в законе всемирного тяготения Ньютона, но оно всегда препятствует ньютоновскому движению. Планеты при своем движении вынуждены преодолевать дополнительное сопротивление, поэтому скорость их должна была бы уменьшаться. Наша Земля, например, должна была бы потерять скорость и упасть на Солнце уже через миллион лет. Но Земля не падает на Солнце из-за расширения самого пространства. Это расширение в точности компенсирует силу сопротивления движению, ведь причина сил притяжения и торможения одна и та же – ускоренное расширение пространства. Происходит именно компенсация, а не взаимное уничтожение сил, иначе никакой аномалии в движении Меркурия и других планет мы бы не обнаружили.Ускорение расширения Вселенной действует как на излучение, так и на сам гравитационный центр, поэтому отклонение лучей света в теории Эйнштейна в два раза больше, чем в теории гравитации Ньютона.
Границы действия гравитационного центра определяют, исходя из условия равенства ускорения закона всемирного тяготения ускорению расширения Вселенной. Максимальный гравитационный радиус действия Солнца в 2660 раз больше расстояния от Земли до Солнца. Теория многомерных пространств точно устанавливает границы Солнечной системы, равные 2660 астрономическим единицам.
На границе Солнечной системы начинается гигантская потенциальная яма, служащая прибежищем для комет с длинным периодом обращения. Чтобы выбраться из потенциальной ямы и начать движение к Солнцу, комета должна в результате возмущающего действия других космических тел приобрести достаточную кинетическую энергию. Гипотетическое облако Оорта следует искать там, где начинается гравитационная яма.
Движение свободных космических тел стремится соответствовать движению расширяющегося пространства Вселенной. Чем больше расстояние, тем меньше скорость космического объекта отличается от скорости движения пространства. Если скорость космического объекта больше скорости движения расширяющегося пространства, то такой космический объект будет замедлять свое движение.
Впервые отклонение в движении (замедление) было обнаружено при наблюдениях за движением межпланетного зонда “Пионер-10”, запущенного 2 марта 1972 года. После завершения программы исследований, зонд вышел за пределы Солнечной системы, но еще 30 лет выходил на связь. В ходе этих сеансов связи и было установлено, что скорость межпланетного зонда уменьшается с ускорением
м/с2, в направлении строго на Солнце. Найденное нами ускорение расширения Вселенной, равное м/c2 позволяет объяснить причину такого замедления движения космического зонда. Зонд стремится сохранить неизменным свое положение на сфере модели Вселенной.4. Черные и белые дыры
Центральной проблемой современной теоретической физики является несовместимость общей теории относительности с квантовой механикой на фундаментальном уровне. Это противоречие не позволяет физикам понять, что на самом деле происходит с пространством и временем, когда они находятся в спрессованном состоянии.
Общая теория относительности ввела в рассмотрение такие экзотические объекты, как черные дыры, но все попытки применить эту теорию к изучению внутреннего устройства черных дыр - провалились. Теория многомерных пространств позволяет нам утверждать, что черные дыры нельзя изучать с помощью общей теории относительности, подобно тому, как нельзя применять специальную теорию относительности к изучению процессов, происходящих с одномерным или трехмерным пространством.
Любой объект легче изучать, когда знаешь его назначение. Мы не знаем, для чего нужны черные дыры, мы, по большому счету, не знаем даже, для чего нужны звезды, какую функцию они выполняют в сложной системе под названием Вселенная.
Посмотрим, как решаются эти непростые вопросы в теории многомерных пространств.
Теория тяготения Ньютона, равно, как и теория тяготения Эйнштейна, совершенно непригодна для описания движения звезд. Угловая скорость вращения звезд нашего Млечного Пути уменьшается по мере увеличения расстояния от центра галактики, но это убывание идет медленнее, чем предписывают теории. Еще более странно ведет себя линейная скорость вращения звезд, которая вначале, до расстояния, равного примерно расстоянию от центра галактики до Солнца - увеличивается, а затем – уменьшается. Не удается объяснить такое поведение звезд и гравитационным отталкиванием. Создается впечатление, что в центре нашей галактики находится гигантская воронка, засасывающая в себя само наше трехмерное пространство. Согласно теории многомерных пространств, так оно и происходит в действительности. В центре галактики расположена большая черная дыра, которая поглощает трехмерное пространство, последовательно превращая его в пространства меньшего числа измерений (рис.5).
Наглядное представление о происходящих во Вселенной пространственно-временных преобразованиях можно получить, последовательно разрушая велосипедное колесо. Обод колеса, покрышку и накачанную велосипедную камеру можно считать моделью одномерного (
) равномерно искривленного пространства, так как отношение поперечного диаметра этой конструкции к ее длине мало.