Следовательно, операторное напряжение на индуктивности равно произведению операторного индуктивного сопротивления на величину операторного тока.
Элемент емкости.
– операторное емкостное сопротивление, – операторная емкостная проводимость.Операторное напряжение на емкости равно произведению операторного емкостного сопротивления на величину операторного тока.
Выражения
представляют закон Ома в операторной форме.
Выводы:
– законы Кирхгофа и Ома справедливы и в операторной форме, причем закон Ома справедлив только при нулевых начальных условиях;
– все ранее изученные методы анализа электрических цепей (метод контурных токов, метод узловых напряжений, метод эквивалентного генератора и др.) справедливы и в операторной форме.
Операторные схемы замещения реактивных элементов
при ненулевых начальных условиях
Часто коммутация осуществляется в момент времени, когда реактивные элементы обладают энергией. В этом случае они находятся при ненулевых начальных условиях и к ним нельзя применить закон Ома в операторной форме. Для устранения этого препятствия используют прием, суть которого состоит в том, что физически один реактивный элемент искусственно заменяют двумя: операторным источником, отражающим энергию реактивного элемента на момент коммутации, и самим реактивным элементом, но находящимся теперь уже при нулевых начальных условиях. Такое изображение называется схемой замещения. Ее можно получить, используя свойства преобразования Лапласа:
.Так, для индуктивности с током схемы замещения имеют вид, показанный на рисунке 1.
а) б) в)
Рис. 1
Они являются следствием преобразования следующих выражений:
;
Здесь следует иметь в виду два обстоятельства: направление операторного тока должно совпадать с направлением тока через индуктивность в момент непосредственно предшествующий коммутации и второе, что реально существует один элемент, поэтому операторный ток через индуктивность в схеме замещения определяется в общей ветви (рис. 1б).
Заряженная емкость отображается схемами замещения, показанными на рисунке 2б, в.
а) б) в)
Рис. 2
Они являются следствием преобразования следующих выражений:
, .Здесь напряжение операторного источника совпадает с напряжением на емкости до коммутации, а операторное напряжение на емкости определяется между зажимами 1 – 1¢.
Применение операторных схем замещения реактивных элементов, находящихся при ненулевых начальных условиях, дает возможность применять закон Ома в операторной форме, что широко используется на практике и, в частности, при рассмотрении свободных колебаний в электрических цепях. Известно, что такие колебания возникают за счет энергии, запасенной реактивными элементами при отключении внешних источников. Следует иметь в виду, что указанная коммутация может осуществляться как путем механического отключения, так и путем гашения источников. В последнем случае источник напряжения заменяется коротким замыканием, а источник тока – обрывом.
При решении задач приходится осуществлять переход от обычной к операторной схеме. Если реактивные элементы находятся при ННУ, то такой переход не вызывает особых затруднений. Например, на рисунке 3, а показана исходная схема, а на рисунке 3, б – эквивалентная ей операторная.
а) б)
Рис. 3
Если же реактивные элементы находятся при ненулевых начальных условиях, то в операторной схеме они должны быть отображены схемами замещения.
Пример.
Пусть в цепи, изображенной на рисунке 4 в момент
замыкается ключ "К". Требуется определить эквивалентную ей операторную схему.Рис. 4
Так как реактивные элементы в данном случае находятся при ненулевых начальных условиях, то предварительно следует определить
и . Для этого изобразим эквивалентную схему цепи при (рис. 5).Рис. 5
Видно, что
; .Таким образом
; и соответствующая этому схема показана на рисунке 6.Рис. 6
Далее находится требуемая реакция в операторной форме, а затем осуществляется переход в область реального времени.
Вывод: нахождение реакций при ненулевых начальных условиях требует применения схем замещения в операторной форме и является более сложной задачей, чем при ННУ.
1. Белецкий А. Ф. Теория линейных электрических цепей. - М.: Радио и связь, 1986.
2. Шалашов Г. В. Переходные процессы в электрических цепях. – Орел: ОВВКУС 1981.