Смекни!
smekni.com

Большое каноническое распределение Гиббса (стр. 2 из 3)

Полученные равенства можно рассматривать как термодинамические уравнения относительно химического потенциала, решением которых будет выражение

. А учитывая (3.21):
, можно исключить и переменную
, выражая ее в виде
. Тогда для энтропии и, соответственно статистического веса, можно записать:

(7.10)

Аналогичным образом осуществляется пересчет и для других переменных состояния и параметров термодинамической системы.

Как и в рассмотренном ранее каноническом распределении, для большого канонического распределения можно показать, что

является чрезвычайно сосредоточенным распределением как по числу частиц N, так и по энергии Е.

Воспользуемся аналогией с выполненным в предыдущей теме расчетом ширины канонического распределения по энергии. Тогда ширина распределения по N рассчитывается на основе дисперсии

и оказывается равной

(7.11)

Здесь

- макроскопические усреднения концентрации частиц.

Тогда для относительной флуктуации

числа частиц, получаем:

(7.12)

Таким образом, допустимые большим каноническим распределением состояния с числом частиц N сосредоточены в узком интервале значений вблизи точки

. Ширина этого интервала в предельном статистическом случае стремится к нулю по закону
. Несложно получить и вид распределения по числу частиц. Выполняя ту же последовательность действий, что и в предыдущей теме для получения распределения по энергии
, приходим к следующему распределению:

(7.13)

Легко видеть, что (7.13) с математической точки зрения представляет распределение Гаусса с математическим ожиданием

и дисперсией
.

Кроме того, большое математическое распределение может быть использовано для определения дисперсии энергии

. Используя соотношение
, проводя непосредственные вычислении и учитывая (6.19), в итоге получим:

(7.14)

2.Введеный в предыдущем вопросе большой канонический формализм Гиббса представляет собой замкнутый аппарат равновесной статистической механики.

Запишем алгоритм проведения конкретных расчетов с использованием большого канонического распределения:

1. Ищется решение уравнения Шредингера для каждого значения N в пределах

:

(7.15)

2. Осуществляется вычисление в главной по V (или по

) асимптотике большой кинетической суммы:

(7.16)

Зная явный вид выражения (7.16), могут быть вычислены термодинамический потенциал “омега” и все термодинамические характеристики системы:

и т.д.

Заметим, что все термодинамические характеристики задаются в переменных (

).

Кроме того, может быть найдено большое каноническое распределение

Это распределение позволяет рассчитать средние значения любых динамических величин, дисперсии флуктуации (при фиксированных

) и т.д.

В случае необходимости, которая, как правило, возникает, производится пересчет полученных результатов от переменных (

) к переменным (
), который производится на термодинамическом уровне. Уравнение

разрешается относительно

.

Это позволяет исключить

из результатов, полученных в пункте 2. Например,

Заметим, что процедура пересчета результатов в других переменных может быть осуществлено и при вычислении статистических сумм.

3.Подведем итог полученным результатам в соответствии с различными способами выделения термодинамической системы из окружения. То есть фактически приведем общую структуру равновесной статистической механики, которая нами была построена, применительно к различным способам термодинамического описания систем многих частиц:

1) Система с адиабатическими стенками. В этом случае фиксируются параметры (

). Функция распределения Wn, определяющая структуру смешанного состояния, выражается при помощи микроканонического распределения Гиббса:

,

а аналитический вес

связан с макроскопической характеристикой – энтропией:

,

которая является термодинамическим потенциалом для переменных состояния (

).

Такое представление имеет преимущественно общетеоретический интерес, поскольку на его основе четко просматриваются основные постулаты и ограничения. На основе которых осуществляется построение статистической механики.

2) Система в термостате,

- состояние задается параметрами (
). Функция распределения Wn задается каноническим распределением Гиббса:

Статистическая сумма

связана с макроскопическим параметром – свободной энергией

,

являющейся термодинамическим потенциалом в переменных (

).

3) Система, выделенная с помощью воображаемых стенок. Выбранный способ описания очень удобен и широко используется, особенно в статистической механике классических систем. В этом случае фиксированными оказываются параметры (

), а число частиц N оказывается микроскопическим параметром. В этом случае функция распределения
вводится с помощью большого канонического распределения Гиббса:

Для выбранного способа описания связь с макроскопическими характеристиками системы осуществляется посредством большой статистической суммы:

Соответствующим термодинамическим потенциалом является потенциал

:

,

который и является термодинамическим потенциалом для системы с воображаемыми стенками.

Этот способ описания также широко используется. Наиболее удобным оказалось использование этого способа в квантовой статистической механике. Относительное неудобство большого канонического формализма связано с часто возникающей необходимостью пересчета результатов к более удобным параметрам (

).