Смекни!
smekni.com

Методы математического анализа и расчёта электронных схем (стр. 1 из 2)

Тольяттинский государственный университет

Кафедра "Промышленная электроника"

РАСЧЁТ ЭЛЕКТРОМАГНИТНОГО ДЕМПФЕРА.

Пояснительная записка к курсовой работе по курсу "Методы математического анализа и расчёта электронных схем"

Вариант № 15

Студент: Моторин С.К.

Группа: Э-306

Преподаватель: Кудинов А.К.

Тольятти 2003


Содержание

ВВЕДЕНИЕ

1. ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ

3. Коррекция точек стыковки

4. Реализация численных вычислений И ПОЛУЧЕНИЕ РЕЗУЛЬТАТОВ

Заключение

Список используемой Литературы


ВВедение

Математическое моделирование устройств промышленной электроники проводится как альтернатива физическому моделированию с целью уменьшения производственных затрат, либо с целью оптимизации параметров разработанных схем. Задача оптимизации параметров, как правило, отличается большой сложностью и требует для своего решения значительных затрат машинного времени. Поэтому эффективность разрабатываемых программ имеет существенное значение и определяется выбором математической модели устройства, а также методов её анализа и оптимизации. Данная работа ориентирована на математическое моделирование вентильных устройств (ВУ) промышленной электроники, как наиболее сложных механических систем с переменными во времени параметрами и структурой. Целью данной работы является составление математической модели электромагнитного демпфера, проверка удовлетворительной работы демпфера при заданных начальных условиях и значениях параметров, а также определение границ допустимых значений, тех или иных параметров системы, при которых работа демпфера удовлетворительна. Работа демпфера считается удовлетворительной, если выполняются условия:

а) масса достигает опоры и остаётся лежать на ней без повторных отскоков;

б) скорость в момент удара £ 0,25 скорости, с которой бы произошло соударение при отсутствии демпфера.


1. ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Промоделировать процессы в электромеханической системе, изображенной на рис.1.1., и построить графики зависимости во времени высоты и скорости груза, тока катушки, магнитной индукции в сердечнике при заданных значениях параметров:

Диаметр расточки: D = 0,06 м;

Зазор на сторону: z = 1мм;

Размеры катушки: hk = 3 см;

bk = 3см;

Диаметр провода: dпр = 1,2 мм;

Число витков: w = 397;

Удельное сопротивление провода: r = 1,78×10-8 Ом×м;

Масса груза: m = 30 кг;

Высота груза над опорой: H = 20 мм;

Начальная скорость груза: Vo = 0 м/с;

Начальное положение сердечника относительно катушки: хо = -15 мм;

Ток источника: J = 3,4 А.

Построить график зависимости посадочной скорости груза (в момент удара об опору) от высоты груза Н и положения хо. По построенным зависимостям определить диапазон допустимых значений Н и положения хо, при которых достигается удовлетворительное демпфирование.


Исследуемая электромеханическая система.


2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ

Электромеханическая система на рис. 1.1. представляет собой электромагнитный демпфер, который нужен для снижения скорости движущейся массы перед ударом. В исходном состоянии масса m поднята над опорой на высоту H. Предоставленная самой себе масса начинает двигаться в поле силы тяжести и падает на опору. Удар считается абсолютно неупругим (вся кинетическая энергия теряется). Для снижения энергии удара с массой m жёстко связан якорь электромагнитного демпфера. Индуктор с катушкой закреплёны неподвижно относительно опоры. Катушка подключена к схеме питания. Положение индуктора подобрано таким образом, что при подлёте массы к опоре электромагнитная сила, развиваемая демпфером, резко возрастает, в результате чего скорость падения массы и энергия удара снижается.

Для упрощения математической модели приняли следующие допущения:

Магнитная проницаемость стали равна бесконечности: mст = ¥;

Электропроводность равна нулю: rст = 0.

i - ток в катушке;

w - число витков в катушке;

G(x) - зависимость проводимости магнитной цепи от положения сердечника.

При таких допущениях магнитную цепь считаем линейной и электромагнитную силу направленную по оси ОХ на рис.1.1. определили по формуле:

Для построения графика функции G(x) приняли, что сердечник имеет координату x=0 тогда, когда его верхний торец расположен на уровне верхнего края катушки. Поскольку аналитическое определение зависимости G(x) представляет собой сложную задачу, а погрешность расчёта магнитных цепей велика, то зависимость G(x) аппроксимировали аналитической функцией вида:

где

(2.7.)
(2.8.)

График G(x) приведен на рис. 2.1.

Также нашли аналитические выражения для Ba - средняя индукция якоря, формула (2.9.) и Y - потокосцепление, формула (2.10.):

(2.10.)


Соотношения 2.2. – 2.10. использовали далее при математическом моделировании электромагнитного демпфера.

На рис.2.2 приведена электрическая схема питания обмотки демпфера. В начальный момент времени диод VD закрыт и ток источника тока J бежит по обмотке демпфера. В некоторый момент времени, когда напряжение на диоде достигнет порогового, диод откроется. Энергия запасенная в обмотке демпфера будет уменьшаться, так как образуется короткозамкнутый контур. Ток через диод будет также уменьшаться, а так как сила пропорциональна току, то будет


График функции G(x).

Схема питания обмотки демпфера.

уменьшаться и сила, то есть и скорость груза. Анализировали переходные процессы методом припасовывания. Согласно данному методу весь период работы схемы разбивается на отдельные "интервалы линейности", каждый из которых описывается линейной системой дифференциальных уравнений (ДУ). Припасовывание заключается в стыковке полученных численных решений, причём значения переменных состояния, полученные в конце n - го интервала, используются как начальные значения этих же переменных состояния для (n+1) - го интервала. Зная, что количество ключевых элементов в схеме определяет количество интервалов линейности, а для исследуемой схемы этих элементов 2, диод и контакт между грузом и опорой, определили количество интервалов линейности. Получили четыре возможных интервала линейности.

Для упорядочения состояний ввели логические переменные:

«0» - если диод закрыт;

«1» - если диод открыт;

«0» - если контакта нет;

«1» - если контакт есть.

Определили номер состояния по формуле:

n = VD + 2Cont. (2.11.)

Для каждого из состояний получили математическую модель в виде системы дифференциальных уравнений и системы условий, определяющих нахождение системы в этом состоянии. Переменными состояния являются потокосцепление, скорость движения груза относительно опоры и координата сердечника. Перед началом численного интегрирования им присваивали начальные значения, взятые из предыдущего состояния. Также составили условия перехода от одного состояния к другому.

Составили математические модели для состояний исследуемой системы:

Состояние n = 0 (диод закрыт, контакта между грузом и опорой нет). Данное состояние описывается системой дифференциальных уравнений 2.12. Условиями перехода от этого состояния к другим являются неравенства 2.13 – 2.14. Схема замещения для этого состояния показана на рис. 2.3.

Условие открытия диода:

Условие летящего груза: