Смекни!
smekni.com

Методика расчета теплоснабжения промышленного жилого района (стр. 8 из 32)

D и d – соответственно наружный и внутренний диаметры волн, м;

- избыточное давление теплоносителя, Па.

При расчете самокомпенсации основной задачей является определение максимального напряжения s у основания короткого плеча угла поворота трассы, которое определяют для углов поворотов 90о по

формуле:

(87)

для углов более 90о, т.е. 90+b, по формуле

(88)

где Dl - удлинение короткого плеча, м;

l - длина короткого плеча, м;

Е - модуль продольной упругости, равный в среднем для стали 2· 105 МПа;

d - наружный диаметр трубы, м;

- отношение длины длинного плеча к длине короткого.

При расчетах углов на самокомпенсацию величина максимального напряжения s не должна превышать [s] = 80 МПа.

При расстановке неподвижных опор на углах поворотов, используемых для самокомпенсации, необходимо учитывать, что сумма длин плеч угла между опорами не должна быть более 60% от предельного расстояния для прямолинейных участков. Следует учитывать также, что максимальный угол поворота, используемый для самокомпенсации, не должен превышать 130о.

10. Расчет усилий на опоры

Вертикальную нормативную нагрузку на подвижную опору Fv, Н, определяют по формуле:

(89)

где

- масса одного метра трубопровода в рабочем состоянии включающий вес трубы, теплоизоляционной конструкции и воды, Н/м;

L - пролет между подвижными опорами, м.

Величина

для труб с наружным диаметром
может быть принята по табл. 4 методического пособия:

Таблица №4 – Масса 1 м трубопровода в рабочем состоянии

, мм

38

45

57

76

89

108

133

159

194

219

273

325

, Н/м

69

81

128

170

215

283

399

513

676

860

1241

1670

, мм

377

426

480

530

630

720

820

920

1020

1220

1420

, Н/м

2226

2482

3009

3611

4786

6230

7735

9704

11767

16177

22134

Пролеты между подвижными опорами в зависимости от условий прокладки и типов компенсаторов приведены в таблицах 5, 6 методического пособия.

Таблица №5 - Пролеты между подвижными опорами на бетонных подушках при канальной прокладке.

Dу, мм

L, м

Dу, мм

L, м

Dу, мм

L, мм

Dу, мм

L, м

25

1,7

80

3,5

200

6

450

9

32

2

100

4

250

7

500

10

40

2,5

125

4,5

300

8

600

10

50

3

150

5

350

8

700

10

70

3

175

6

400

8,5

800

10

Таблица №6 - Пролеты между подвижными опорами при надземной прокладке, а также в тоннелях и техподпольях.

Dу, мм

L, м

Dу, мм

L, м

Dу, мм

L, м

25

2

125

6/6

400

14/13

32

2

150

7/7

450

14/13

40

2,5

175

8/8

500

14/13

50

3

200

9/9

600

15/13

70

3,5

250

11/11

700

15/13

80

4

300

12/12

800

16/13

100

5/5

350

14/14

900

18/15

1000

20/16

Примечание: в числителе L для П-образных компенсаторов и самокомпенсации, в знаменателе - для сальниковых компенсаторов.

Горизонтальные нормативные осевые нагрузки на подвижные опоры Fhx, Н, от трения определяются по формуле:

(90)

где

- коэффициент трения в опорах, который для скользящих опор при трении сталь о сталь принимают равным 0,3 (при использовании фторопластовых прокладок
= 0,1), для катковых и шариковых опор
= 0,1.

При определении нормативной горизонтальной нагрузки на неподвижную опору следует учитывать: неуравновешенные силы внутреннего давления при применении сальниковых компенсаторов, на участках имеющих запорную арматуру, переходы, углы поворота, заглушки; следует также учитывать силы трения в подвижных опорах и силы трения о грунт для бесканальных прокладок, а также реакции компенсаторов и самокомпенсации. Горизонтальную осевую нагрузку на неподвижную опору следует определять:

· на концевую опору - как сумму сил действующих на опору;

· на промежуточную опору - как разность сумм сил действующих с каждой стороны опоры.

Неподвижные опоры должны рассчитываться на наибольшую горизонтальную нагрузку при различных режимах работы трубопроводов (охлаждение, нагрев) в том числе при открытых и закрытых задвижках. Для расчета усилий действующих на неподвижные опоры могут быть использованы типовые расчетные схемы, приведенные в литературе [5. стр.172-173], [7.стр.230-242].