Газогенератор представляет собой вертикальный цилиндрический (шахтный) аппарат , футерованный изнутри огнеупорным кирпичом . В низу газогенератора расположена колосниковая решетка с движущимся гребком для распределения дутья , она же служит для непрерывного удаления из газогенератора зольной части угля .
После дробления и подсушки сухой уголь поступает в бункер газогенератора , откуда шнеком он подается в низ шахты газогенератора . Дутье (кислород , воздух) и пар подаются через водо-охлаждаемые фурмы газогенератора , расположенные под колосниковой решеткой . Это дутье и создает «кипящий» слой угля , который занимает 1/3 объема газогенератора .
Несколько выше «кипящего» слоя топлива подается вторичное дутье для газификации уносимой в верх газогенератора дисперсной угольной пыли . Температура газификации держится в пределах 850-1100 ‘С в зависимости от температуры плавления золы топлива во избежание ее расплавления . Чтобы повысить температуру в газогенераторном процессе и избежать расплавления золы топлива , в уголь , поступающий в газогенератор , добавляют кальцинированную (обожженную) известь .Повышение температуры увеличивает скорость процесса газификации топлива , способствует его полноте . В верхней части шахты газогенератора установлен котел-нтилизатор для подогрева воды и получения пара , используемого в процессе . Известь , вводимая в процесс может также служить для удаления серы из получаемого газа .
После грубой очистки полученного газа от топливной пыли , уносимой из газогенератора потоком газа , в циклоне газ поступает для тонкой очистки от летучей золы в мультициклон .Далее его очищают от летучей золы в электрофильтрах и в скрубберах с водной промывкой газа. Давление в процессе несколько выше нормального ,что необходимо для преодоления сопротивления системы . Температура получаемого пара - 350-500 ‘C , он может быть использован в другом процессе .
2. Газогенератор с аэрозольным потоком топлива .Газификация в аэрозольном потоке топлива (газогенератор типа Копперса - Тотцека) разрабатывается с 1938 г. В 1948 г. был сооружен демонстрационный газогенератор для газификации угольной пыли по этому методу , а первый промышленный газогенератор был введен в эксплуатацию в
1950 г. Газогенераторы подобного типа - это первая попытка создать универсальный газогенераторный процесс для газификации твердого топлива любого типа , от молодых бурых углей до каменных углей и антрацитовой пыли . В таком газогенераторе можно газифицировать также тяжелые нефтяные остатки нефтяной кокс .
Подготовка угля к процессу заключается в его измельчении до пылевидного состояния (размер частиц - до 0,1 мм) и сушке (до 8% влажности) . Угольная пыль пневматически с помощью азота транспортируется в угольный бункер , откуда шнеками подводится к смесительным головкам горелочных устройств и далее парокислородной смесью инжектируется в газогенератор . Парокислородные горелки для вдувания угольной пыли располагают друг против друга , поэтому в газогенераторе создается турбулентный слой встречных перекрещивающихся потоков взвешенного в парогазовом слое твердого топлива . В этом турбулентном потоке при температуре 1300-1900 ‘С и происходит безостаточная газификация поступившего в газогенератор топлива . При такой температуре зола топлива плавится и стекает в низ газогенератора , где попадает в водяную баню и гранулируется , а гранулированный шлак удаляется .
Газовый поток поднимается вверх газогенератора , где расположены подогреватель воды и паровой котел . Полученный пар используется в процессе , а газ охлаждается в холодильнике-скуббере , где проходит его частичная очистка от унесенной потоком газа топливной пыли и золы . Тонкая очистка газа от пылевого уноса происходит в дезинграторе и мокром (орошаемом водой) электрофильтре . Сухой чистый газ подается потребителю для использования .
Процесс газификации топливной частицы в газогенераторе длится меньше секунды . После очистки полученного газа от сероводорода , диоксида углерода из системы выдается чистый технологический газ , который может быть использован в химической технологии .
Две или четыре горелки , расположенные друг против друга , гарантирует воспламенение топливной смеси и безопасность процесса в целом . Интенсивность процесса при высокой температуре так высока , что в небольшом по объему газогенераторе можно получать
50 000 м3/ч и перерабатывать за сутки 750-850 т угольной пыли .
Аллотермические процессы
1. Газификация угля с использованием тепла атомного реактора. Чтобы получить высококалорийный безазотистый газ из угля без затрат углерода газифицируемого топлива на подогрев газифицируемой смеси до высокой температуры , используют аллотермические процессы .
Тепло для процесса газификации может быть проведено разными методами ,например за счет подогрева теплоносителя теплом атомного реактора . Теплоносителем в процессе может служить гелий .
Теплоноситель подогревается в атомном реакторе до температуры 850-950 ‘C .Подогретый гелий ( первый гелиевый контур ) направляют в другой теплообменный аппарат , где также циркулирует гелий ( второй гелиевый контур ). Во втором гелиевом контуре нагретый гелий используется в газогенераторе для газификации угля .
Уголь, прежде чем поступить в газогенератор для газификации водяным паром , проходит через газогенератор для низкотемпературной газификации угля ( швелевания ), где из него отгоняются летучие компоненты . Получено в результате швелевания богатый (высококалорийный) газ , содержащий кроме СО и Н2 метан и другие углеводороды ,после его очистки от пыли , смолы , газовой воды присоединяется к газогенераторному газу поступающему из газогенератора , прошедшему пылеочистку и отдавшему свое тепло в котле - утилизаторе .
Далее идет очистка газа от диоксида углерода и сероводорода , и полученный газ , содержащий СО и Н2 ( синтез-газ ) , передается для технологического использования . Если требуется обогатить газ метаном , его направляют в метанатор , где протекает реакция гидрирования СО водородом до метана с образованием воды . После отделения воды полученный синтетический природный газ используют в качестве топлива .
2. Газификация топливной пыли с использованием низкотемпературной плазмы .В ряде случаев требуется получить из угля сразу газ с высоким содержанием СО и Н2 и малым содержанием диоксида углерода , метана и азота . Этот газ можно получить при очень высокой температуре газификации , порядка 3 000- 3 500 ‘C. Такая температура может быть достигнута в низкотемпературной электрической плазме . При этом исключается влияние источника тепла на состав получаемого газа . Значительно возрастает интенсивность процесса . Он примерно в 10 раз интенсивнее топочных процессов (циклонные топки с жидким шлакоудалением ) . Водяной пар в этом процессе используется в качестве плазмообразующего газа , что исключает забалластирования конечного газа инертным азотом .
В плазмотронах водяной пар нагревают с помощью электрического разряда до плазменного состояния и при температуре порядка 3 000 - 4 000 ‘C его подают в газогенератор . Сюда же например потоком кислорода , подают угольную пыль , которая , попадая в плазму взаимодействует с водяным паром и кислородом . Полученный синтоз-газ подают в камеру охлаждения и очистки газа от зольных частиц . В процессе отсутствуют потери углерода с уносом и шлаком происходит полная стехиометрическое превращение углерода топлива .
Типичные составы газов полученных в автотермических и аллотермических процессах , приведены в таблице .
Наименование процесса Состав конечного газа, % объемный
СО2 СОН2СН4N2
Автотермические процессы
Газификация мелкозернистого топлива в «кипящем» слое 19,0 38,0 40,0 2,0 1,0
(газогенератор Винклера, парокислородный процесс)
Газификация пылевидного топлива в аэрозольном потоке
(газогенератор Копперса-Тотцека, парокислородный про- 12,0 56,0 29,4 0,6 2,0
цесс)
Аллотермические процессы
Газификация с использованием атомного тепла 0,9 4,3 62,9 31,9 ---
(гелиевый теплоноситель, гидрирующая газификация)
Газификация пылевидного топлива в плазме водяного 1,5 41,8 64,6 0,1 2,0
пара
Парогазовый цикл
Любая технология развивается , имеет какую-то незавершенность , подвержена постоянным изменениям . Она несет в себе элементы прошлого , которые не соответствуют современным экологическим нормам , предъявляемым к технологическим процессам . Проанализируем работу современной тепловой электростанции ( ТЭС ) , работающей на твердом топливе . Такие электростанции жизненно необходимы , без них нет промышленности , они вырабатывают электроэнергию для транспорта , предприятий торговли , быта , но они , безусловно , вредны в экологическом плане , так как выбрасывают в окружающее пространство вещества , наносящие вред здоровью людей и ущерб окружающей среде . Из дымовых труб ТЭС выбрасываются миллионы тон золы , сажи , оксидов серы , азота . Взаимодействуя с влагой воздуха , эти выбросы порождают кислотные дожди , которые наносят вред флоре и фауне Земли . Они отравляют водоемы , разрушают сооружения и памятники культуры . Это бедствие современной цивилизации. Ученые считают ,что сравнительная оценка ущерба ,наносимого здоровью человека работой ТЭС на угле и атомной электростанции ,в расчете на одинаковую выработку электроэнергии в год , дает преимущество ядерному циклу по меньшей мере в 100 раз .
Можно ли создать и создается ли такая технология использования твердого топлива в энергетике , которая бы была экологически более приемлемой , чем на современной ТЭС? Да , такая технология разработана , и она входит в современную энергетическую технику под названием комбинированного парогазового цикла .