Смекни!
smekni.com

Основы химии (стр. 32 из 32)

ΔHI>0

На второй стадии процесса растворения происходит образование сольватов (в частном случае гидратов), т.е. группировок, состоящих из молекул (ионов) растворяемого вещества, окруженных молекулами растворителя. Процесс сольватации сопровождается выделением теплоты. Энтальпия второй стадии процесса растворения идет со знаком минус.

ΔHII<0

В целом, процесс растворения будет эндотермическим (раствор будет охлаждатся), если на разрушение агрегатного состояния растворяемого вещества тратится больше энергии, чем ее выделяется в процессе сольватации. Такой эндоэффект (ΔHраств>0) наблюдается при растворении твердых веществ. Например, растворение в воде Na2S2O3*7H2O приводит к сильному охлаждению раствора. И, наоборот, если растворяются газы или жидкости в жидких растворителях, то процесс сольватации выделяет значительно больше энергии, чем ее затрачено на первой стадии процесса (ΔHII>ΔHI) раствор сильно нагревается. Этот тепловой эффект процесса растворения называется экзоэффектом. (ΔHраств<0).

На процесс растворения влияют следующие основные факторы (природа растворяемого вещества и растворителя, их агрегатное состояние, температура, давление, наличие в растворе посторонних веществ).

1. Природа растворяемого вещества и растворителя.

Существует классическое правило “подобное растворяется в подобном”. Полярные вещества (ионные соединения и соединения с полярной ковалентной связью) лучше растворяются в полярнрм растворителе. Для растворения неполярных веществ необходимо применять неполярные соединения.

2. Температура. Давление.

О влиянии температуры на растворимость можно говорить только в общих чертах, т.к. этот процесс не однозначный. Как правило, повышение температуры увеличивает растворимость тех веществ, процесс растворимости которых эндотермичный, т.е. идет с поглощением теплоты (ΔHраств>0).

Рассмотрим несколько частных случаев.

а). Растворимость твердых веществ в жидкостях.

С повышением температуры растворимость твердых веществ увеличивается, так на разрушение кристаллической решетки твердого тела расходуется энергии больше, чем ее выделяется при сольватации (гидротации). ΔHI>ΔHII. Однако степент увеличения растворимости от температуры различна (табл.12.2.). В некоторых случаях кривая растворимости может проходить через своеобразный максимум. Примером может служить растворимость сульфата натрия в воде.

б). Растворимость газов.

При повышение температуры растворимость газа в жидком растворителе уменьшается, т.к. в данном случае процесс растворения экзотермический, он сопровождается выделением теплоты (ΔHраств<0). По принципу Ле Шателье равновесие в данном случае смещается влево, и концентрация газа в растворе уменьшается. Поэтому, например, на стенках стакана воды, принесенного с улицы в теплое помещение, появляются пузырьки воздуха, из-за уменьшения растворимости газа (воздуха) при повышении температуры.

Если говорить о растворимости газов в жидкостях, то необходимо отметить, что она различна. Некоторые газы очень мало растворимы в воде (азот, водород), расворимость других газов – очень велика. Значительную растворимость аммиака в воде можно объяснить его химическим взаимодействием с водой.

На растворимость газов сильно влияет давление. Зависимость растворимости газов от давления выражается законами Дж. Генри и Дж. Дальтона.

1.

· Масса газа, растворяющегося в данном объеме жидкости, пропорциональна давлению, которое газ производит на жидкость.

По другому, закон Генри можно сформулировать и так:

· Растворимость газа при постоянной температуре прямопропорциональна его порциальному давлению над раствором.

Х=КР

Здесь Х– молярная доля растворенного вещества в насыщенном растворе. К– коэффициент пропорциональности (константа Генри), Р– парциальное давление.

2. Объем газа, растворяющегося в данном объеме жидкости не зависит от давления.

(Например, при 200С и 1атм в 100г воды растворяется 0,17г диоксида углерода. При увеличении давления в два раза масса растворяющегося газа тоже увеличивается в два раза и будет равной 0,34г. В тоже время объем газа не изменяется).

3. При растворении смеси газов растворимость каждой составной части пропорциональна своему порциальному давлению (той части общего давления в газовой смеси, которая обусловлена данным газом).

Следует отметить, что эти законы имеют ограничения. Они справедливы только для сравнительно разбавленных растворов, невысоких давлений и отсутствия химического взаимодействия между молекулами газа и растворителя. Газы, вступающие в химическое взаимодействие с водой, этим законам не подчиняются. Но, в принципе, растворимость газа при нагревании обычно уменьшается, а с увеличением давления повышается.

в). Растворимость жидкостей в жидкостях.

Интервал растворимости жидкостей в жидких растворителях значительный. Одни из них смешиваются в любых отношениях (например вода и спирт). Вторые растворяются друг в друге до определенного предела. (Так, если смешать эфир с водой, то образуется два слоя: верхний слой представляет собой насыщенный раствор воды в эфире, а нижний – насыщенный раствор эфира в воде. С увеличением температуры частичная растворимость двух жидкостей друг в друге, как правило, возрастает.

3. Присутствие посторонних веществ.

Как правило посторонние вещества своим присутствием в растворе уменьшают растворимость данного вещества. Уменьшение растворимости вещества в присутствии солей обычно называют ”высаливанием”. Так же происходит уменьшение растворимости малорастворимых электролитов, если ввести в их насыщенный раствор одноименные ионы.

4. На скорость процесса растворения влияют степень диффузии растворяемого вещества в среду растворителя (необходимо применение перемешивания) и дисперстность (степень измельчения) твердого вещества.

11.3. Способы выражения концентраци растворов.

Важной характеристикой любого раствора является относительное содержание в нем растворенного вещества и растворителя, которое называется концентрацией. Количественно концентрация может выражаться разными способами: отношением масс, объемов, числа молей, отношением массы к объему и, наоборот, числа молей к массе или объему и т.д. Одни способы выражения концентрации относятся к так называемым весовым способам, а другие –к объемным. На практике используют более десятка (точнее тринадцать) способов выражения концентрации.

1. Массовая доля: Nm=m/m+m0 (отношение массы растворенного вещества

“m” к массе раствора, т.е. сумме масс ве-

щества и растворителя (m0)).

2. Мольная доля: Nn=n/n+n0 (отношение числа молей растворенного ве-

щества “n” к сумме числа молей вещества и растворителя).

3. Объемная доля: Nv=v/v+v0 (отношение объема растворенного вещества

к сумме объемов вещества и растворителя).

4. Массовый процент: m/m+m0*100, %

(обычно этот способ называют процентной концентрацией).

5. Мольный процент: n/n+n0*100, %.

6. Объемный процент: v/v+v0*100, %.

7. Массовое отношение: m/m0 (отношение массы вещества к массе раство-

рителя).

8. Объемное отношение: v/v0 (отношение объема растворенного вещества

к объему растворителя).

9. Мольное отношение: n/n0 (отношение числа молей растворенного ве-

щества к числу молей растворителя).

10. Молярная концентрация (или молярность).

Определяется отношением числа молей растворенного вещества к объему раствора, выраженному в литрах. Физический смысл молярной концентрации заключается в том, что она указывает на число молей вещества содержащегося в 1литре его раствора. Обозначают М или См.

11. Нормальная концентрация (или нормальность).

Определяется отношением числа эквивалентов растворенного вещества к объему раствора, выраженному в литрах. Физический смысл нормальной концентрации заключается в том, что она указывает на число эквивалентов растворенного вещества, содержащегося в 1литре раствора. Обозначают Н или Сн.

12. Моляльная концентрация (моляльность).

Определяется отношением числа молей растворенного вещества к массе растворителя, выражается в килограммах. Физический смысл заключается в том, что она показывает, сколько молей вещества растворено в 1кг (1000г) растворителя. Обозначают m или Сm. Моляльность можно расчитать по следующей формуле: m=1000*a/Ma*b (где а –масса растворенного вещества в граммах, Ма –молекулярная масса вещества, b –масса растворителя).

13. Титр. (Т.) указывает на массу в граммах растворенного вещества, содержащуюся в одном миллилитре (см3) раствора.

Применение того или иного способа выражения концентрации зависит от решения конкретных практических задач.