Смекни!
smekni.com

Пятая побочная подгруппа Периодической системы элементов Д.И. Менделеева (стр. 3 из 10)

так и в кислотах:

2 + 2HC1 = VОСl2 + Н2O;

VO2 + H2SO4 = VOSO4 + H2O

Водный его раствор не изменяет цвета ни синей, ни крас­ной лакмусовой бумажек, т. е. его амфотерность распре­делена поровну между кислотными качествами и основ­ными. Водные растворы солей содержат ванадий не в виде простого катиона, а в виде иона ванадила, имеюще­го две формы существования: VO2+- и V2O24+ - и придаю­щего синий цвет растворам.

В щелочах образуются соли поливанадиевых кислот H4V4O9 или H2V2O5, называются соли ванадитами или поливанадатами. При величине рН = 4 из растворов со­лей можно осадить серовато-бурый аморфный гидроксид VO(OH)2. Если щелочность увеличить, при рН от 8 до 10 гидроксид (в соответствии со своими амфотерными каче­ствами) будет растворяться, превращаясь в соли. При сплавлении этого оксида ванадия с оксидами щелочнозе­мельных металлов получаются ванадаты:

VO2 + CaO = CaVO3

Могут образовываться три ряда ванадатов СаVО3, Са2VO4, Ca3VO5 со сложной структурой.

Наиболее важным и интересным, с точки зрения хи­мика, считается высший оксид ванадия V2O5, который может иметь вид красных или красно-желтых кристал­лов либо оранжевого порошка. Получается он по реак­ции ванадия с кислородом. При 600—700°С взаимодейст­вие идет очень быстро, так как образующийся оксид V2О5 расплавляется (tпл = 675°С) и скатывается с поверхности металлического ванадия. Лабораторный способ его получения — из метаванадата аммония;

2NH43 = V2О5+2NH3+H2О

Высший оксид ванадия имеет ярко выраженный кис­лотный характер и при растворении в воде образует ва­надиевую кислоту:

V2О5 + Н2О = 2НVО3

Форма существования ванадия в растворе кислоты - в виде катиона VO2+, цвет раствора желтовато-оранже­вый. При растворении оксида ванадия (V) в основаниях получаются соли изомерных ванадиевых кислот, напоми­нающих фосфаты:

V2O5+2NaOH = 2NaVO3+H2O

V2O5+6NaOH = 2Na3VO4+3H2O

По форме они соответствуют мета - [НVO3], орто - [Н3VO4]и H2V2O7 пированадиевым кислотам. В этом отношении ванадий обнаруживает сходство уже не с азотом, а с фосфором.

Особенность ванадия (в степени окисления +5) при растворении в сильных кислотах — образовывать комп­лексные соединения, содержащие до девяти -двенадца­ти атомов ванадия на молекулу. Другим замечательным свойством оксида можно считать способность в расплав­ленном состоянии проводить электрический ток, скорее всего вследствие диссоциации на ионы:

V2O5 VO2+ + VO3-

А ведь пропускание электрического тока считается без­условной «привилегией» металлов. По этому свойству распознается принадлежность вещества к металлам или неметаллам.

Характер гидратных форм оксидов ванадия меняется закономерно с изменением степени его окисления. В со­стоянии наибольшего окисления он образует кислоты, по­добные кислотам фосфора и мышьяка, элементов, кото­рые являются соседями ванадия, но относятся к противо­положной подгруппе. Слово «противоположная» означа­ет, что элементы различных подгрупп одной группы — химические антиподы: для одних должны быть более характерны свойства металлов, а для других — неме­таллов. Но при сравнении членов обеих подгрупп мож­но заметить, что «противоположности» сближаются. У элементов побочной подгруппы все более усиливаются свойства неметаллов, характерные для главной подгруп­пы, и наоборот.

Ванадий в этом отношении служит примером. В выс­шей окислительной степени у него преобладают свойст­ва неметалла. При состоянии окисления +4 его гидро­ксид в одинаковой мере проявляет. Свойства обеих про­тивоположностей, т. е. он амфотерен.

Сопоставив приведенные данные об оксидах ванадия с аналогичными сведениями о подобных соединениях других членов V группы, можно прийти к следующему выводу: по количеству оксидов и по числу состояний окисления ванадий далеко превосходит не только членов побочной подгруппы (это естественно), но и некоторые элементы главной подгруппы. Если судить по кислород­ным соединениям (именно их особенности несколько де­сятилетий назад считались основным признаком сходст­ва и различия), то ванадий должен считаться более близким «родственником» азота, чем висмут, сурьма и даже мышьяк. Ведь эти элементы не образуют всех ти­пов оксидов, присущих азоту, а существующие у них по своим свойствам подобны оксидам фосфора.

I.6. Ванадиевые кислоты, основания и соли

Ванадиевая кислота, подобно фосфорной и мышья­ковой имеет три формы: НVО3(мета-),H3VO4(орто-), H4V2O7(nupo-). Сами кислоты в чистом виде не получа­ются, но соли их можно осадить из раствора. Например, регулированием кислотности среды можно выделить се­ребряную соль во всех трех формах (табл. 1).

Таблица 1

Среда РН Соль
Кислая 4,3 – 4,7 AgVO3
Слабокислая 5,5 – 5,8 Ag4V2О7
Почти нейтральная 6 - 6,5 Ag34

Сам собой напрашивается вывод о сходстве солей вана­диевых и фосфорных кислот. Аналогичные соли были выделены и для других ионов металлов (например, соли натрия).

Наиболее устойчивой в водных растворах является метаванадиевая кислота, которая все время именуется как просто ванадиевая. Это соединение обладает призна­ками амфотерности, которые более значительны, чем у фосфорных кислот. Для нее возможны направления элек­тролитической диссоциации как с отщеплением Н+, так и ОН-.

VO3- + H+ HVO3 = VO2OH VO2+ + ОН-

Существование VO2- можно доказать тем, что соляная кислота реагирует с раствором ванадиевой кислоты и окисляется до свободного хлора:

2VO2+ + 2HCl 2V02 + + Cl2 + 2OH-

Следовательно, в этом случае проявляются некоторые признаки основания.

По цвету раствора и по солям, выделяющимся из не­го, можно судить, в форме ионов каких кислот присутствует ванадий в растворе.

При растворении в воде оксида ванадия (V) появля­ется желтая окраска, которая может меняться и даже исчезать совсем в зависимости от среды. Такая особен­ность объясняется возможностью ионаVO3- существовать в различных формах. Желтый цвет обусловлен при­сутствием этого иона в тримерной форме [V3О9]3-. При сильно щелочной среде раствор бесцветен: там находят­ся ионы пиро- и ортованадиевых кислот:

2[V309]3- + 60H- = 3[V2O7]4- + 3H2O;

[V2О7]4- + 2ОН- = 2[VO4]3- + Н2О

По мере уменьшения щелочности окраска опять становится желтой и даже оранжевой. Это связано с измене­нием формы существования иона VO3- от [V3О9]3- в щелочной среде и [VO4]3- в нейтральной до [V6O17]4- в кислой:

3[VО4]3- +6H+ = 3[V2 O9]3- + 3H2О;

2[V3О9]3- + 2H+ = [V6Ol7]4-+ H2О

При подщелачивании процесс идет в обратную сторону:

[V6O17] 4- + 2OН- = 2[V3О9]3- + H2O

Оранжевый цвет приписывается присутствию иона декаванадата:

5 [V6O17]4- ++ = 3[V10O28]6- + Н2О,

который может быть выделен из раствора в виде оран­жевой соли кальция Ca3V10O28.16H2О. Здесь приведены простейшие формулы. Реально же в небольших количествах присутствуют и другие соединения, заключающие в составе своей молекулы до 12 атомов ванадия.

Из солей ванадиевой кислоты растворимы соли од­новалентных металлов (К, Na и т.д.), а ванадаты ам­мония, двух- и трехвалентных металлов труднорастворимы. Из них особенно важен ванадат аммония. Из него при действии на его раствор сульфида аммония образу­ется вишнево-красный раствор тиосоли:

NH43 + 4(NH4)2S + 3H2О = (NH4)3VS4 + 6NH4ОH

Пероксид водорода Н-О-О-Н производит в нем за­мену части атомов кислорода на пероксидную группу -O-O- и превращает его в перванадат:

2NH43 + 3H2О2 = (NH4)2H2V2О10 + 2H2О

Сами по себе и в щелочной среде такие соединения ус­тойчивы, а при подкислении образуются свободные надкислоты общей формулы H4V2Ox (причем x > 7). Они постепенно разлагаются с выделением кислорода. Свой­ство давать пероксидные соединения характерно и для остальных членов подгруппы ванадия.

Из других солей пятивалентного ванадия достаточно полно охарактеризованы сульфид V2S5 и единственное соединение с галогенами - пентафторид ванадия VF5. Первое из этих двух соединений проще всего может быть получено в виде черного порошка нагреванием V2О3с серой при 350°С;