Смекни!
smekni.com

Расчет распределения примесей в кремнии при кристаллизационной очистке и диффузионном легировании (стр. 4 из 6)

Когда концентрация вещества изменяется только в одном направлении (одномерная диффузия) и при диффузии в изотропной среде (коэффициент диффузии - скаляр) первое уравнения Фика имеет следующий вид:

(8)

При простейшем анализе структур и в простейших моделях процессов легирования в технологии изготовления ИМС предполагаются именно такие условия диффузии.

Второе уравнение диффузии (второй закон Фика) получается путем сочетания первого закона и принципа сохранения вещества, согласно которому изменение концентрации вещества в данном объеме должно быть равно разности потоков этого вещества на входе в объем и выходе из него.

В общем случае второе уравнение диффузии имеет следующий вид

(9)

Для одномерной диффузии в изотропной среде уравнение (9) можно записать

(10)

Второй закон Фика характеризует процесс изменения концентрации диффундирующей примеси во времени в различных точках среды и является математической моделью нестационарного (развивающегося) состояния системы (описывает период времени от начала процесса до установления стационарного состояния).

При постоянстве коэффициента диффузии D (независимости его от концентрации примеси) уравнение (10) упрощается

(11)

Допущение о постоянстве коэффициента диффузии справедливо в большом количестве случаев, анализируемых в технологии ИМС.

Уравнения диффузии являются чисто феноменологическими, т.е. они не содержат никаких сведений о механизмах диффузии - о диффузионном процессе на атомном, уровне. Кроме того, уравнения (7) - (11) не содержат информации о зарядовом состоянии диффундирующих частиц.

Процессы диффузии, используемые для изготовления интегральных структур, обычно анализируются с помощью частных решений уравнения (11) т.к., в отличие от (8), именно оно содержит важный параметр - время установления некоторого анализируемого состояния системы. Основная цель решения уравнения - найти распределение примесиN(x,t) в полупроводнике после диффузии в течение определенного времени t при различных условиях осуществления процесса.

Общее решение уравнения (11) для бесконечного твердого тела при заданном в общем, виде начальном распределении примеси N(x,0) = f(x) может быть найдено методом разделения переменных. Оно имеет вид

, (12)

здесь x - текущая координата интегрирования.

Бесконечным в одномерном представлении называют тело, простирающееся от x=0 до x=- ¥и до x=+ ¥.

Часто при поиске распределения концентрации примеси в полупроводнике необходимо решение уравнения (11) для полубесконечного твердого тела. Полубесконечным в одномерном представлении называют тело, простирающееся от x=0 до x=+ ¥.

Для этого случая выражение (12) может быть приведено к виду

(13)

В выражении (13) знак плюс относится к ситуации, когда граница твердого тела (x=0) является непроницаемой для диффундирующего вещества, находящегося в области x>0,

(отражающая граница), а знак минус - к случаю, когда на границе твердого тела в любой момент времени концентрация диффундирующего вещества, также находящегося в области x>0, равна нулю - связывающая граница.

Представленные решения позволяют находить распределения примеси в твердом теле при любых начальных условиях. Решение конкретной задачи сводится к подстановке в (12) или (13) соответствующих ситуации начальных условий с последующими, как правило, очень громоздкими преобразованиями.

1.3.1 Распределение примеси при диффузии из полубесконечного пространства (диффузия из концентрационного порога)

Диффундирующая примесь (диффузант) поступает в полубесконечное тело через плоскость x=0 из второго полубесконечного тела (источника) с равномерным распределением примеси. Концентрация примеси в источнике - No. Полагается, что в принимающем диффузант теле нет рассматриваемой примеси.

Начальное распределение концентраций для этого случая задается в виде

N(x,0) = Noдля x<0

N(x,0) = 0для x>0

Решением уравнения (11) для этого случая является выражение

(14)

Второе слагаемое в квадратных скобках называют интегралом ошибок Гаусса или, иначе, функцией ошибок - error functionи сокращенно обозначают erf (z). В соответствии с сокращением это распределение называют erf - распределением.

(15)

В математике часто используют как самостоятельную и другую функцию

erfcz = 1- erfz (16)

которая называется дополнением функции ошибок до единицы или дополнительной функцией ошибок - error function complement. Обе функции табулированы.

Таким образом, выражение (14) можно записать

(17)

Величина

имеет размерность длины и носит название диффузионной длины или длины диффузии. Физический смысл этого параметра - среднее расстояние, которое преодолели диффундирующие частицы в направлении выравнивания градиента концентрации за время t.

Рассмотренное решение можно использовать как простейшую модель, представляющую распределение примеси в автоэпитаксиальной структуре. При этом, в качестве независимых источников примеси выступает как подложка, так и эпитаксиальный слой. Процессы диффузии с каждой стороны рассматриваются в этом случае как независящие друг от друга, а реальное распределение примесей на границе раздела будет представлять собой сумму отдельных решений.

1.3.2 Распределение примеси при диффузии из постоянного источника в полубесконечное тело.

Диффузант поступает в полубесконечное тело через плоскость x=0 из источника, обеспечивающего постоянную концентрацию примеси Noна поверхности раздела твердое тело - источник в течение любого времени. Такой источник называют бесконечным или источником бесконечной мощности. Полагается, что в принимающем диффузант теле нет рассматриваемой примеси.

Начальное распределение концентраций и граничные условия для этого случая задаются в виде

N(x,t) = Noдля x=0

N(x,0) = 0для x>0

Решением уравнения (16) для данных условий является выражение

(18)

Если в объеме полупроводникового материала до диффузии имелась примесь противоположного типа по отношению к диффундирующей, эта примесь распределена по объему равномерно и её концентрация равна Nb, то в этом случае в полупроводнике образуется электронно-дырочный переход. Его положение (глубина залегания) xj определяется условием N(x,t)=Nb , откуда

(19)

и

(20)

здесь запись erfc-1 обозначает аргумент z функции erfc.

При решении практических задач, связанных с анализом диффузионных процессов необходимо знать количество примеси Q, накопленной в твердом теле при диффузии в течение времени t. Эта величина определяется по формуле

(21)

где J(0,t) - поток диффузанта в объем через плоскость x=0

(22)

отсюда

(23)

Следует обратить внимание на возрастающее со временем значение накопленной в диффузионном слое примеси при диффузии с данными граничными условиями.

Рассмотренная модель диффузионного процесса с постоянным источником описывает процесс диффузионного легирования полупроводникового материала из газовой или паровой фазы. Этот процесс используется при создании сильно легированных диффузионных слоев (например, эмиттерных) с поверхностными концентрациями No близкими к значениям предельной твердой растворимости примеси в данном полупроводниковом материале.

Твердое тело можно считать полубесконечным ( или бесконечным) в том случае, если его размеры в направлении движения диффузанта много больше длины диффузии.

1.3.3 Распределение примеси при диффузии из слоя конечной толщины (диффузия из ограниченного источника) в полубесконечное тело с отражающей границей.

Диффундирующая примесь поступает в полубесконечное тело из источника, который представляет собой примыкающий к границе тела слой толщиной h, примесь в котором распределена равномерно. Такой источник называют ограниченным. Концентрация примеси в источнике - No. Полагается, что в принимающем диффузант твердом теле нет рассматриваемой примеси.